
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	21:	
• Greedy	Algorithms:	Scheduling	Problems

Apr	5,	2018

 



Obligatory	Wall	Street	Quotation

The	movie	Wall	Street,	however,	is	not.



Greedy	Algorithms

• What’s	a	greedy	algorithm?

• Roughly:	an	algorithm	that	builds	a	solution	
myopically	and	never	looks	back
• Compare	to	dynamic	programming

• Typically:	make	a	single	pass	over	the	input
• Example:	Kruskal’s	MST	algorithm



Greedy	Algorithms

• Why	do	care	about	greedy	algorithms?
• Greedy	algorithms	are	the	fastest	and	simplest	
algorithms	imaginable,	and	sometimes	they	work!

• Simplicity	makes	them	easy	to	adapt	to	different	models
• Sometimes	useful	heuristics	when	they	don’t



Interval	Scheduling



(Weighted)	Interval	Scheduling

• Input:	! intervals	 "#, %# with	values	&#
• Output: a	compatible	schedule	' with	the	largest	
possible	total	value
• A	schedule	is	a	subset	of	intervals	' ⊆ {1,… , !}
• A	schedule	' is compatible	if	no	two	-, . ∈ ' overlap
• The	total	value	of	' is	∑ &#�

#∈2



(Unweighted)	Interval	Scheduling

• Input:	! intervals	 "#, %#
• Output: a	compatible	schedule	' with	the	largest	
possible	size
• A	schedule	is	a	subset	of	intervals	' ⊆ {1,… , !}
• A	schedule	' is compatible	if	no	two	-, . ∈ ' overlap



Possibly	Greedy	Rules

• Choose	the	shortest	interval	first

• Choose	the	interval	with	earliest	start	first

• Choose	the	interval	with	earliest	finish	first



Greedy	Algorithm:	Earliest	Finish	First

• Sort	intervals	so	that	%3 ≤ %5 ≤ ⋯ ≤ %7
• Let	' be	empty
• For	- = 1,… , !:
• If	interval	- doesn’t	create	a	conflict,	add	- to	'

• Return	'



Greedy	Stays	Ahead

• How	do	we	know	we	found	an	optimal	sched.
• “Greedy	Stays	Ahead” strategy
• We’ll	show	that	at	every	point	in	time,	the	greedy	
schedule	does	better	than	any	other	schedule



Greedy	Stays	Ahead

• Let	9 = -3, … , -: be	greedy’s	schedule
• Let	; = {.3, … , .<} be	some	optimal	schedule
• Main	Claim:	for	every	= = 1,… , >,	%#? ≤ %@?



Greedy	Stays	Ahead

• Let	9 = -3, … , -: be	greedy’s	schedule
• Let	; = {.3, … , .<} be	some	optimal	schedule
• Main	Claim:	for	every	= = 1,… , >,	%#? ≤ %@?



Greedy	Stays	Ahead

• Let	9 = -3, … , -: be	greedy’s	schedule
• Let	; = {.3, … , .<} be	some	optimal	schedule
• Main	Claim:	for	every	= = 1,… , >,	%#? ≤ %@?



Greedy	Stays	Ahead

• Let	9 = -3, … , -: be	greedy’s	schedule
• Let	; = {.3, … , .<} be	some	optimal	schedule
• Finishing	the	Proof.		Claim:	> ≥ "



Minimum	Lateness	Scheduling



Minimum	Lateness	Scheduling

• Input:	! jobs	with	length =# and	deadline B#
• Output: a	minimum-lateness	schedule	for	the	jobs

• Can	only	do	one	job	at	a	time,	no	overlap
• The	lateness	of	job	- is	max %# − B#, 0
• The	lateness	of	a	schedule is	max# max %# − B#, 0



Possible	Greedy	Rules	(Ask	the	Audience)

• Choose	the	shortest	job	first	(min =#)?



Possible	Greedy	Rules	(Ask	the	Audience)

• Choose	the	most	urgent	job	first	(minB# − =#)?



Greedy	Algorithm:	Earliest	Deadline	First

• Sort	jobs	so	that	B3 ≤ B5 ≤ ⋯ ≤ B7
• For	- = 1,… , !:
• Schedule	job	- right	after	job	- − 1	finishes



Exchange	Argument

• 9 =	greedy	schedule,	; =	optimal	schedule

• Exchange	Argument:
• We	can	transform	; to	9 by	exchanging	pairs	of	jobs
• Each	exchange	only	reduces	the	lateness	of	;



Exchange	Argument

• 9 =	greedy	schedule,	; =	optimal	schedule

• Observation:	the	optimal	schedule	has	no	gaps
• A	schedule	is	just	an	ordering	of	the	jobs,	with	jobs	
scheduled	back-to-back



Exchange	Argument

• 9 =	greedy	schedule,	; =	optimal	schedule

• We	say	that	two	jobs	-, . are	inverted in	; if					
B# < B@ but	. comes	before	-
• Simplifying	Assumption:	all	deadlines	are	unique
• Observation:	greedy	has	no	inversions



Exchange	Argument

• We	say	that	two	jobs	-, . are	inverted in	; if					
B# < B@ but	. comes	before	-
• Claim:	the	optimal	schedule	has	no	inversions
• Step	1:	suppose	; has	an	inversion,	then	it	has	an	
inversion	-, . where	-, . are	consecutive



Exchange	Argument

• We	say	that	two	jobs	-, . are	inverted in	; if					
B# < B@ but	. comes	before	-
• Claim:	the	optimal	schedule	has	no	inversions
• Step	1:	suppose	; has	an	inversion,	then	it	has	an	
inversion	-, . where	-, . are	consecutive
• Step	2:	if	-, . are	a	consecutive	jobs	that	are	inverted	
then	flipping	them	only	reduces	the	lateness



Exchange	Argument

• If	-, . are	a	consecutive	jobs	that	are	inverted	then	
flipping	them	only	reduces	the	lateness



Exchange	Argument

• We	say	that	two	jobs	-, . are	inverted in	; if					
B# < B@ but	. comes	before	-
• Claim:	the	optimal	schedule	has	no	inversions
• Step	1:	suppose	; has	an	inversion,	then	it	has	an	
inversion	-, . where	-, . are	consecutive
• Step	2:	if	-, . are	a	consecutive	jobs	that	are	inverted	
then	flipping	them	only	reduces	the	lateness

• 9 is	the	unique	schedule	with	no	inversions,	; is	
the	unique	schedule	with	no	inversions,	9 = ;



Classroom	Assignment



Classroom	Assignment

• Input:	! classes	 "#, %#
• Output: an	assignment	of	intervals	to	classrooms	
using	the	smallest	number	of	classrooms
• classrooms	can	hold	any	number	of	classes
• but	no	two	classes	can	share	a	classroom



Classroom	Assignment

• Example

• Is	this	an	optimal	packing	of	these	classes?



Greedy:	First	Available	Classroom

• Sort	classes	by	start	time	so	"3 ≤ "5 ≤ ⋯ ≤ "7
• For	- = 1,… , !
• Let	L be	the	smallest	#	classroom available	at	time	"#
• Assign	class	- to	room	L



Duality

• Let	9 be	the	greedy	assignment
• Claim:	if	9 uses	M classrooms,	then	no	assignment	
can	use	fewer	than	M classrooms	
• Let	= be	the	time	when	we	first	used	classroom	M
• There	must	be	at	least	M classes	that	are	in	session	at	
time	= (so	all	assignments	use	≥ M)


