HW9 due tonight
HULO will be due Apr 20 (last HW)

CS4800: Algorithms \& Data Jonathan Ullman

Lecture 21:

- Greedy Algorithms: Scheduling Problems

Apr 6, 2018

Obligatory Wall Street Quotation

The movie Wall Street, however, is not.

Greedy Algorithms

- What's a greedy algorithm?
- Roughly: an algorithm that builds a solution myopically and never looks back
- Compare to dynamic programming
- Typically: make a single pass over the input
- Example: Kruskal's MST algorithm

Greedy Algorithms

- Why do care about greedy algorithms?
- Greedy algorithms are the fastest and simplest algorithms imaginable, and sometimes they work!
- Simplicity makes them easy to adapt to different models
- Sometimes useful heuristics when they don't

Interval Scheduling

(Weighted) Interval Scheduling

- Input: n intervals $\left(s_{i}, f_{i}\right)$ with values v_{i}
- Output: a compatible schedule S with the largest possible total value
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no two $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$
\square

$$
S=\{1,3\}
$$

\qquad

$$
\operatorname{val}(s)=v_{1}+v_{3}=13
$$

(Unweighted) Interval Scheduling

- Input: n intervals (s_{i}, f_{i})
- Output: a compatible schedule S with the largest possible size
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no two $i, j \in S$ overlap

$$
\begin{aligned}
S & =\{1,3,5,9\} \\
|S| & =4
\end{aligned}
$$

Possibly Greedy Rules

- Choose the shortest interval first

Fail

- Choose the interval with earliest start first

Fail

- Choose the interval with earliest finish first

Succeeds We il pave th s from font peoples

Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_{1} \leq f_{2} \leq \cdots \leq f_{n} \quad O(n \log n)$ time
- Let S be empty end $\leftarrow 0$
- For $i=1, \ldots, n$:
- If interval i doesn't create a conflict, add i to S

$$
n \times O(1)
$$

- Return S

$$
\left(\bar{B} s_{i} \geqslant \text { end ? }\right) \quad \text { end } \leftarrow f_{i}=O(n)
$$

Total time is $O(n \log n)$

Greedy Stays Ahead (Proof by Induction)

- How do we know we found an optimal sched.
- "Greedy Stays Ahead" strategy
- We'll show that at every point in time, the greedy schedule does better than any other schedule

Greedy Stays Ahead

- Let $G=\left\{i_{1}, \ldots, i_{r}\right\}$ be greedy's schedule
- Let $O=\left\{j_{1}, \ldots, j_{S}\right\}$ be some optimal schedule
- Main Claim: for every $t=1, \ldots, r, f_{i_{t}} \leq f_{j_{t}}$ (My interval + finstes before yous interval t.)

Greedy Stays Ahead

- Let $G=\left\{i_{1}, \ldots, i_{r}\right\}$ be greedy's schedule
- Let $O=\left\{j_{1}, \ldots, j_{s}\right\}$ be some optimal schedule
- Main Claim: for every $t=1, \ldots, r, f_{i_{t}} \leq f_{j_{t}}$

Base Case $(t=1)$:
By construction, f_{i}, is the smallest fins tome

$$
\Longrightarrow \quad f_{i_{1}} \leq f_{j_{1}}
$$

Greedy Stays Ahead

- Let $G=\left\{i_{1}, \ldots, i_{r}\right\}$ be greedy's schedule
- Let $O=\left\{j_{1}, \ldots, j_{s}\right\}$ be some optimal schedule
- Main Claim: for every $t=1, \ldots, r, f_{i_{t}} \leq f_{j_{t}}$

Inductive Step: Assume $f_{i_{t-1}} \leq f_{j_{t-1}}$
Assume for contradiction that $f_{i_{t}}>f_{\bar{u}_{t}}$
\Rightarrow greedy would have chosen j_{t} over i_{t} greedy's ($t-1$)st interval
\square

ut

Greedy Stays Ahead

- Let $G=\left\{i_{1}, \ldots, i_{r}\right\}$ be greedy's schedule
- Let $O=\left\{j_{1}, \ldots, j_{s}\right\}$ be some optimal schedule
- Finishing the Proof. Claim: $r \geq s$

Assume for the sake of contradiction that $s>r$.
But then greedy stopped early for no reason.

would have been in greedy L
jr
j_{r+1}

Minimum Lateness Scheduling

Minimum Lateness Scheduling

- Input: n jobs with length t_{i} and deadline d_{i}
- Output: a minimum-lateness schedule for the jobs
- Can only do one job at a time, no overlap
- The lateness of job i is $\max \left\{f_{i}-d_{i}, 0\right\}$
- The lateness of a schedule is $\max _{i}\left\{\max \left\{f_{i}-d_{i}, 0\right\}\right\}$

Possible Greedy Rules (Ask the Audience)

- Choose the shortest job first $\left(\min t_{i}\right)$?

$$
t_{1}=1
$$

greedy is

> opt

Possible Greedy Rules (Ask the Audience)

- Choose the most urgent job first $\left(\min d_{i}-t_{i}\right)$?

greedy

alate
opt

Oblate	1 lake
$0 \rightarrow 1$	$1 \rightarrow 11$

Late

Greedy Algorithm: Earliest Deadline First

- Sort jobs so that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$
- For $i=1, \ldots, n$:
- Schedule job i right after job $i-1$ finishes
$O(n \log n)$ time algonthm
- We can easily give stat and finish tires so that our schedule has no overlaps

Exchange Argument

- G = greedy schedule, $O=$ optimal schedule
- Exchange Argument:
- We can transform O to G by exchanging pairs of jobs
- Each exchange only reduces the lateness of O

\qquad $0^{\prime \prime}$ \qquad " \qquad G
- lateness new mueases along the chain
- therefore lateness $(G) \leq$ lateness (0)

Exchange Argument

- $G=$ greedy schedule, $O=$ optimal schedule
- Observation: the optimal schedule has no gaps
- A schedule is just an ordering of the jobs, with jobs scheduled back-to-back

Exchange Argument

- $G=$ greedy schedule, $O=$ optimal schedule
- We say that two jobs i, j are inverted in O if $d_{i}<d_{j}$ but j comes before i
- Simplifying Assumption: all deadlines are unique
- Observation: greedy has no inversions

Exchange Argument
If O a not greedy the I can
implore O by eliminating as mover ion

- We say that two jobs i, j are inverted in O if $d_{i}<d_{j}$ but j comes before i
- Claim: the optimal schedule has no inversions
- Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
no

yes

if i, j are muted, some of then must be mooted
if we flip i, j then we
Exchange Argument reduce the lateress, therefore
O vas not optimal.
- We say that two jobs i, j are inverted in O if $d_{i}<d_{j}$ but j comes before i
- Claim: the optimal schedule has no inversions
- Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
- Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

Exchange Argument

- If i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness
- Choose some ordering for greedy.
- Argue that if a olotren doesnt respect that ordeng then there are two posts consecutively that dost.
(LArge that flipping these ports only helps.
Part that depends on your problem

Exchange Argument

- We say that two jobs i, j are inverted in O if $d_{i}<d_{j}$ but j comes before i
- Claim: the optimal schedule has no inversions
- Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
- Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness
- G is the unique schedule with no inversions, O is the unique schedule with no inversions, $G=0$

Classroom Assignment

Classroom Assignment

- Input: n classes $\left(s_{i}, f_{i}\right)$
- Output: an assignment of intervals to classrooms using the smallest number of classrooms
- classrooms can hold any number of classes
- but no two classes can share a classroom

Classroom Assignment

π at this time we need at least 5 classrooms

- Is this an optimal packing of these classes?

The only type of obstruction is that there is a time t w) k classes in session

Greedy: First Available Classroom

- Sort classes by start time so $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$
- For $i=1, \ldots, n$
- Let c be the smallest \# classroom available at time s_{i}
- Assign class i to room c

Duality

- Let G be the greedy assignment
- Claim: if G uses k classrooms, then no assignment can use fewer than k classrooms
- Let t be the time when we first used classroom k
- There must be at least k classes that are in session at time t (so all assignments use $\geq k$)
Suppose the first use of room k was class i
There must have been k classes sit. $s_{i} \in[s, f]$
- Clearly class i is ore of then
- Since we dint use room $1, \ldots, k-1$, those rooms must have been aligned classes j sot $\quad s_{i} \in\left[s_{j} f_{j}\right]$

