Lecture 21:
• Greedy Algorithms: Scheduling Problems
Obligatory *Wall Street* Quotation

The movie *Wall Street*, however, is not.
Greedy Algorithms

• What’s a greedy algorithm?

• Roughly: an algorithm that builds a solution myopically and never looks back
 • Compare to dynamic programming

• Typically: make a single pass over the input
 • Example: Kruskal’s MST algorithm
Greedy Algorithms

• Why do care about greedy algorithms?
 • Greedy algorithms are the fastest and simplest algorithms imaginable, and sometimes they work!
 • Simplicity makes them easy to adapt to different models
 • Sometimes useful heuristics when they don’t
Interval Scheduling
(Weighted) Interval Scheduling

- **Input:** n intervals (s_i, f_i) with values v_i
- **Output:** a compatible schedule S with the largest possible total value
 - A schedule is a subset of intervals $S \subseteq \{1, \ldots, n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap
 - The total value of S is $\sum_{i \in S} v_i$

![Example]

$v_1 = 6$
$v_2 = 8$
$v_3 = 7$

$S = \{1, 3\}$

$\text{val}(S) = v_1 + v_3 = 13$
(Unweighted) Interval Scheduling

• **Input:** \(n \) intervals \((s_i, f_i)\)

• **Output:** a compatible schedule \(S \) with the largest possible size

 • A schedule is a subset of intervals \(S \subseteq \{1, \ldots, n\} \)

 • A schedule \(S \) is compatible if no two \(i, j \in S \) overlap

\[
S = \{1, 3, 5, 9\}
\]

\[|S| = 4\]
Possibly Greedy Rules

- Choose the shortest interval first

- Choose the interval with earliest start first

- Choose the interval with earliest finish first

We'll prove this from first principles
Greedy Algorithm: Earliest Finish First

• Sort intervals so that \(f_1 \leq f_2 \leq \cdots \leq f_n \) \(\mathcal{O}(n \log n) \) time
• Let \(S \) be empty
 \[\text{end} \leftarrow 0 \quad \mathcal{O}(1) \]
• For \(i = 1, \ldots, n \):
 • If interval \(i \) doesn't create a conflict, add \(i \) to \(S \)
 \((s_i \geq \text{end} ?) \)
 \[\text{end} \leftarrow f_i \quad \mathcal{O}(1) \]
• Return \(S \)

Total time is \(\mathcal{O}(n \log n) \)
Greedy Stays Ahead

(Proof by Induction)

• How do we know we found an optimal sched.

• “Greedy Stays Ahead” strategy
 • We’ll show that at every point in time, the greedy schedule does better than any other schedule
Greedy Stays Ahead

• Let $G = \{i_1, \ldots, i_r\}$ be greedy’s schedule
• Let $O = \{j_1, \ldots, j_s\}$ be some optimal schedule
• Main Claim: for every $t = 1, \ldots, r$, $f_{i_t} \leq f_{j_t}$

(“My interval finishes before your interval t.”)
Greedy Stays Ahead

• Let $G = \{i_1, \ldots, i_r\}$ be greedy’s schedule
• Let $O = \{j_1, \ldots, j_s\}$ be some optimal schedule
• Main Claim: for every $t = 1, \ldots, r$, $f_{i_t} \leq f_{j_t}$

Base Case ($t=1$):

By construction, f_{i_1} is the smallest finish time

$\Rightarrow f_{i_1} \leq f_{j_1}$
Greedy Stays Ahead

• Let $G = \{i_1, ..., i_r\}$ be greedy’s schedule
• Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
• Main Claim: for every $t = 1, ..., r$, $f_{i_t} \leq f_{j_t}$

Inductive Step: Assume $f_{i_{t-1}} \leq f_{j_{t-1}}$
Assume for contradiction that $f_{i_t} > f_{j_t}$

\Rightarrow greedy would have chosen j_t over i_t

Greedy’s $(t-1)st$ interval

\[i_{t-1} \quad j_{t-1} \]

Opt’s $(t-1)st$ interval

\[i_t \quad j_t \]
Greedy Stays Ahead

• Let $G = \{i_1, ..., i_r\}$ be greedy’s schedule
• Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
• Finishing the Proof. Claim: $r \geq s$

Assume for the sake of contradiction that $s > r$. But then greedy stopped early for no reason.

would have been in greedy
Minimum Lateness Scheduling
Minimum Lateness Scheduling

- **Input:** \(n \) jobs with length \(t_i \) and deadline \(d_i \)
- **Output:** a minimum-lateliness schedule for the jobs
 - Can only do one job at a time, no overlap
 - The lateness of job \(i \) is \(\max\{f_i - d_i, 0\} \)
 - The lateness of a schedule is \(\max_i\{\max\{f_i - d_i, 0\}\} \)
Possible Greedy Rules (Ask the Audience)

• Choose the shortest job first (min t_i)?
Possible Greedy Rules (Ask the Audience)

• Choose the most urgent job first ($\min d_i - t_i$)?

```
<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>greedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>lateness 0</td>
</tr>
<tr>
<td>0 → 10</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 late</td>
</tr>
<tr>
<td>0 → 1</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>q late</th>
</tr>
</thead>
</table>
```
Greedy Algorithm: Earliest Deadline First

• Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
• For $i = 1, \ldots, n$:
 • Schedule job i right after job $i - 1$ finishes

 • $O(n \log n)$ time algorithm
 • We can easily give start and finish times so that our schedule has no overlaps
Exchange Argument

• $G = \text{greedy schedule}, \ O = \text{optimal schedule}$

• Exchange Argument:
 • We can transform O to G by exchanging pairs of jobs
 • Each exchange only reduces the lateness of O

 $O \rightarrow O' \rightarrow O'' \rightarrow O''' \rightarrow \ldots \rightarrow G$

 • Lateness never increases along the chain
 • Therefore, latency $(G) \leq \text{lateness} \ (O)$
Exchange Argument

- $G = \text{greedy schedule}$, $O = \text{optimal schedule}$

- Observation: the optimal schedule has no gaps
 - A schedule is just an ordering of the jobs, with jobs scheduled back-to-back
Exchange Argument

- $G =$ greedy schedule, $O =$ optimal schedule

- We say that two jobs i,j are inverted in O if $d_i < d_j$ but j comes before i
 - Simplifying Assumption: all deadlines are unique
 - Observation: greedy has no inversions
Exchange Argument

- We say that two jobs \(i, j \) are inverted in \(O \) if \(d_i < d_j \) but \(j \) comes before \(i \).

- Claim: the optimal schedule has no inversions
 - Step 1: suppose \(O \) has an inversion, then it has an inversion \(i, j \) where \(i, j \) are consecutive.

 If \(i, j \) are inverted, some \(k, k+1 \) in the middle of them must be inverted.
Exchange Argument

• We say that two jobs \(i, j \) are inverted in \(O \) if \(d_i < d_j \) but \(j \) comes before \(i \)

• Claim: the optimal schedule has no inversions
 • Step 1: suppose \(O \) has an inversion, then it has an inversion \(i, j \) where \(i, j \) are consecutive
 • Step 2: if \(i, j \) are a consecutive jobs that are inverted then flipping them only reduces the lateness

\[
\text{late}(j) = \max \{ t_j - d_j, 0 \} \quad \Rightarrow \quad \text{late}(j) = \max \{ t_j + t_i - d_j, 0 \} \\
\text{late}(i) = \max \{ t_i - d_i, 0 \} \quad \Rightarrow \quad \text{late}(i) = \max \{ t_i - d_i, 0 \}
\]
Exchange Argument

• If i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness.

 • Choose some ordering for greedy.
 • Argue that if a solution doesn't respect that ordering then there are two points consecutively that don't.

 [• Argue that flipping these points only helps.

Part that depends on your problem.
Exchange Argument

• We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i

• Claim: the optimal schedule has no inversions
 • Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
 • Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

• G is the unique schedule with no inversions, O is the unique schedule with no inversions, $G = O$
Classroom Assignment
Classroom Assignment

- **Input:** n classes (s_i, f_i)
- **Output:** an assignment of intervals to classrooms using the smallest number of classrooms
 - classrooms can hold any number of classes
 - but no two classes can share a classroom
Classroom Assignment

• Example

The score of an assignment is the total # of classrooms that are ever used.

At this time we need at least 5 classrooms.

• Is this an optimal packing of these classes?

The only type of obstruction is that there is a time t with k classes in session.
Greedy: First Available Classroom

• Sort classes by start time so \(s_1 \leq s_2 \leq \cdots \leq s_n \)

• For \(i = 1, \ldots, n \)
 • Let \(c \) be the smallest # classroom available at time \(s_i \)
 • Assign class \(i \) to room \(c \)
Duality

• Let G be the greedy assignment

• Claim: if G uses k classrooms, then no assignment can use fewer than k classrooms
 • Let t be the time when we first used classroom k
 • There must be at least k classes that are in session at time t (so all assignments use $\geq k$)

Suppose the first use of room k was class i
There must have been k classes s.t. $s_i \in [s, f]$
 • Clearly class i is one of them
 • Since we didn't use room $1, \ldots, k-1$, those rooms must have been assigned classes j s.t. $s_j \in [s, f]$.