CS4800: Algorithms & Data Jonathan Ullman

Lecture 20: More Applications of Network Flow

Apr 3, 2018

Image Segmentation

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
 - whether pixel i is in the foreground or background
 - whether pair (i,j) are likely to go together

Image Segmentation Pij: penalty for separating these two () \bigcirc a: hou likely to be in the foreground b: hou likely to be in the background

Image Segmentation

- Input:
 - a directed graph G = (V, E); V = "pixels", E = "pairs"
 - likelihoods $a_i, b_i \ge 0$ for every $i \in V$
 - separation penalty $p_{ij} \ge 0$ for every $(i, j) \in E$
- Output: foregrand background • a partition of V into (A, B) that maximizes

$$\max_{A, \mathcal{S}} q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{from } A \text{ to } B}} p_{ij}$$

w/o pij, the problem is trustal

- Differences between IS and MINCUT:
 - IS asks us to maximize, MINCUT asks us to minimize

$$\frac{15 (\text{maximization})}{\max_{A,B} \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{from } A \text{ to } B}} p_{ij}} \longleftrightarrow \frac{\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{from } A \text{ to } B}} p_{ij}}{\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{from } A \text{ to } B}} p_{ij}}$$

• IS allows any partition, MINCUT requires $s \in A, t \in B$ Add nodes s,t. Now any way of partitioning the noder in V is OK.

$$arg \max_{A,B} \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} P_i j$$

$$= arg \min_{T \in A} \sum_{j \in B} b_j + \sum_{(i,j) \in E} P_i j$$

$$= arg \min_{T \in A} (\sum_{i \in V} a_i + \sum_{j \in V} b_j) - \sum_{T \in A} a_i - \sum_{j \in B} b_j + \sum_{(i,j) \in E} P_i j$$

$$= arg \min_{A,B} (\sum_{i \in V} a_i + \sum_{j \in V} b_j) + \sum_{T \in A} a_i - \sum_{j \in B} b_j + \sum_{(i,j) \in E} P_i j$$

$$= arg \min_{A,B} \sum_{i \in B} a_i + \sum_{j \in A} b_j + \sum_{(i,j) \in E} P_i j$$

$$= arg \min_{A,B} \sum_{i \in B} a_i + \sum_{j \in A} b_j + \sum_{(i,j) \in E} P_i j$$

- How should the reduction work?
 - capacity of the cut should correspond to the function we're trying to minimize

- How should the reduction work?
 - capacity of the cut should correspond to the function we're trying to minimize

Step 1: Transform the Input

$$\begin{array}{c} \begin{array}{c} \text{Input G, \{a, b, p\}} \\ \text{for IS} \end{array} \longrightarrow \\ \begin{array}{c} \text{Input G' for} \\ \text{MINCUT} \end{array} \\ \begin{array}{c} G^{\prime} = (V', E^{\prime}) & \S e_{ij} \end{array} \\ \begin{array}{c} G^{\prime} = (V', E^{\prime}) & \S e_{ij} \end{array} \\ \begin{array}{c} G^{\prime} = (V', E^{\prime}) & \S e_{ij} \end{array} \\ \begin{array}{c} V^{\prime} = V + \S s, t \end{array} \\ \begin{array}{c} E^{\prime} = E + \S (s, i) \end{array} + \S (i, t) \end{array} \\ \begin{array}{c} O(m) & \text{time} \end{array} \\ \begin{array}{c} O(m) & \text{time} \end{array} \\ \begin{array}{c} |V^{\prime}| = |V| + 2 \end{array} \\ \begin{array}{c} C_{ij} = P_{ij} & \forall e t \end{array} \\ \begin{array}{c} C_{ij} = A_{i} \\ C_{it} = b_{i} \end{array} \end{array} \\ \begin{array}{c} V^{\prime} = V + \S s, t \end{array} \\ \end{array}$$

Step 2: Receive the Output

Step 3: Transform the Output

$$A = A^{2} - \frac{5}{5}$$

 $B = B^{2} - \frac{5}{5}$

correctness?

The maximum cut m
$$G^{2}$$
 is A^{2} , B^{2} minimizing
 $\sum_{i \in A} b_{i} + \sum_{i \in B} a_{i} + \sum_{i \in J} p_{ij}$
 $i \in A$ if B^{2} L^{2} , $j \in B^{2}$
 $i \in A^{2}$, $j \in B^{2}$

• running time? Can solve min cut in time O(|V'||E'|) = O((n+2)(m+2n)) = O(nm)The reduction is O(m) \longrightarrow total time is O(nm)

Densest Subgraph

E(S,S) = 8

- Want to identify communities in a network
 - "Community": a set of nodes that have a lot of connections inside and few outside

Densest Subgraph

- Input:
 - an undirected graph G = (V, E)
- Output:
 - a subset of nodes $S \subseteq V$ that maximizes $\left| \frac{2|E(S,S)|}{|S|} \right|$

$$E(A,B) = \{(i,j) \in E : if A, j \in B\}$$

$$E(S,S) = set of edges u) both endpoints in S$$

$$E(S,S') = set of edges crossing the cut (S,S')$$

$$E(S,S') = set of edges crossing the cut (S,S')$$

Mmcut finds S,S^c to minimize $\sum c(i,j)$ (i,j) $\in E(s,S^c)$ (i,j) $\in E(s,S^c)$ (i,t) = 1(i,t) = 1