CS4800: Algorithms \& Data Jonathan Ullman

Lecture 20:
More Applications of Network Flow

Apr 3, 2018

Image Segmentation

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
- whether pixel i is in the foreground or background
- whether pair (i,j) are likely to go together

Image Segmentation

a_{i} : how likely to be in the foreground b_{i} : hoo likely to be in the background

Image Segmentation

- Input:
- a directed graph $G=(V, E) ; V=$ "pixels", $E=$ "pairs"
- likelihoods $a_{i}, b_{i} \geq 0$ for every $i \in V$
- separation penalty $p_{i j} \geq 0$ for every $(i, j) \in E$
- Output:

- a partition of V into (A, B) that maximizes

$$
\max _{A, B} q(A, B)=\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}
$$

who pis, the problem s trivial

Reduction to MinCut

- Differences between IS and MINCUT:
- IS asks us to maximize, MINCUT asks us to minimize

$$
\begin{array}{cc}
\text { IS (maximization) } & \text { is }^{\prime} \text { (mimimation) } \\
\max _{A, B} \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{\substack{(i, j) \in E \\
\text { from } A \text { to } B}} p_{i j}
\end{array} \min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\
\text { from } A \text { to } B}} p_{i j}
$$

- IS allows any partition, MINCUT requires $s \in A, t \in B$

Add nodes s, t. Now any way of partitioning the nodes in V is O.

$$
\begin{aligned}
& \underset{A, B}{\operatorname{argmax}} \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E} P_{i j} \\
& =\underset{i \in A, j \in B}{\operatorname{argmin}}-\sum_{i \in A, B} a_{i}-\sum_{j \in B} b_{j}+\sum_{(i, j) \in E} P_{i j} \\
& =\underset{\cdots}{\operatorname{argmin}}\left(\sum_{i \in V} a_{i}+\sum_{j \in V} b_{j}\right)-\sum_{i \in A} a_{i}-\sum_{j \in B} b_{j}+\sum_{(:, \bar{j}) \in E} P_{i} j \\
& =\underset{\cdots}{\operatorname{argmin}} \sum_{i \in B} a_{i}+\sum_{j \in A} b_{j}+\sum_{(i, j) \in E} P_{i j} \\
& i \in A, j \in B
\end{aligned}
$$

Reduction to MinCut

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

$$
\min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ \text { from } A \text { to } B}} p_{i j}
$$

Reduction to MinCut

- How should the reduction work?
- capacity of the cut should correspond to the function we're trying to minimize

$$
c(s, j)=a_{i} \quad \min _{A, B} \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\begin{array}{c}
(i, j) \in E \\
\text { from } A \text { to } B
\end{array}} p_{i j} \quad \operatorname{mm} \sum_{A, B} c(i, j)
$$

(1) $\forall(i, j) \in E, c(i, j)=p(i, j)$
(2) Add edges $(s, i) w) c(s, i)=a_{i}$
(3) Add edges $(i, t) w / c(i, t)=b_{i}$

$$
c(i, t)=b_{i}
$$

Step 1: Transform the Input

Step 2: Receive the Output

Step 3: Transform the Output

Output $\left(A^{3}, B^{3}\right)$ for for IS MINCUT

$$
\begin{aligned}
& A=A^{\prime}-\{s\} \\
& B=B^{\prime}-\{t\}
\end{aligned}
$$

$O(1)$ time

Reduction to MinCut

- correctness?

The maiman at in G^{\prime} is A^{\prime}, B^{\prime} manmizag

$$
\sum_{i \in A} b_{i}+\sum_{i \in B} a_{i}+\sum_{\substack{(i, j) \in E \\ i \leftarrow A^{\prime}, j+B^{\prime}}} P_{i j}
$$

- running time?

Car solve minot in time $O\left(\left|y^{\prime}\right|\left|E^{\prime}\right\rangle\right)$

$$
\begin{aligned}
& =O((n+2)(m+2 n)) \\
& =O(n m)
\end{aligned}
$$

The redrtion is $O(m) \quad \Rightarrow$ total time is $O\left(n_{m}\right)$

Densest Subgraph

Community Detection

$$
E(s, s)=8
$$

$$
\frac{2.8}{5}=3.2
$$

- Want to identify communities in a network
- "Community": a set of nodes that have a lot of connections inside and few outside

Densest Subgraph

- Input:
- an undirected graph $G=(V, E)$
- Output:
- a subset of nodes $S \subseteq V$ that maximizes $\frac{2|E(S, S)|}{|S|}$

$$
E(A, B)=\{(i, i)) \in E: \text { if } A, j \in B\}
$$

$E(S, S)=$ set of edges w) both endpoints in S $E\left(S, S^{c}\right)$ = set of edges crossing the cut $\left(S, S^{c}\right)$

Reduction to MinCut
\rightarrow assume \quad (e) $=1$

- Different objectives
- find $\left(S, S^{c}\right)$ to maximize $\frac{2|E(S, S)|}{|S|}$
(BS)
- assume there
- find $\left(S, S^{c}\right)$ to minimize $\left|E\left(S, S^{c}\right)\right|$ (MINCUT) are "dummy nodes" s, t
- Suppose $\frac{2|E(S, S)|}{|S|} \geq d$ and see what that implies of density $\geqslant d$?
- $2|E(S, S)| \geq d|S|$
- $\Sigma_{v \in S} \operatorname{deg}(v)-\left|E\left(S, S^{c}\right)\right| \geq d|S|$
- $\Sigma_{v \in V} \operatorname{deg}(v)-\Sigma_{v \in S^{c}} \operatorname{deg}(v)-\left|E\left(S, S^{c}\right)\right| \geq d|S|$
- $2|E|-\Sigma_{v \in S^{c}} \operatorname{deg}(v)-\left|E\left(S, S^{c}\right)\right| \geq d|S|$
- $\Sigma_{v \in S^{c}} \operatorname{deg}(v)+d|S|+\left|E\left(S, S^{c}\right)\right| \leq 2|E|$

moncot fonds S, S^{c} to minimize $\sum c(i, j)$
(1) $\forall l, i j) \in E$ add a bidrectional edge $(i, j) \in E\left(s, s^{\prime}\right)$ w $c(1, j)=1$
(3) $\forall i$ add
(3) $\forall i$ add $(s, i) ~-1$ capacty $c(s, i)=\operatorname{deg}(i)$ (i, t) ir capacty $c(i, t)=d$

