CS4800: Algorithms & Data Jonathan Ullman

Lecture 17:

- Network Flow
 - Choosing Good Augmenting Paths

Mar 20, 2018

- Directed graph G = (V, E)
- Two special nodes: source *s* and sink = *t*
- Edge capacities c(e)

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity)
 - For every $v \in E$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation) (except s,t)

non-negativity

• The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$

• MaxFlow = Find an s-t flow of maximum value

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

MinCut: Find an s-t cut of minimum capacity

G:

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time is O(m) per augmentation step
- val (f^{*}) Matter augmentinations in any graph with integer capacities
 - O(n) augmentations in graphs with unit capacities
 (total time O(mo))
 - MaxFlow-MinCut Theorem: The value of the max s-t flow equals the capacity of the min s-t cut
 - If f^* is a max flow, the nodes reachable from s in G_{f^*} are a min cut
 - Given a max flow, can find a min cut in time O(n+m) via BFS

• Two Problems:

- MaxFlow: given a network G=(V,E), capacities c(e), source s, sink t, find the s-t flow of maximum value
- MinCut: given a network G=(V,E), capacities c(e), source s, sink t, find the s-t cut of minimum value
- Ford-Fulkerson Algorithm:
 - Start with the empty flow f(e) = 0
 - While there is an augmenting path P in the residual graph G_f, increase f along the path

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all $e \in E$
- While
 - There is an augmenting path P in the residual graph G_f
- Augment flow along the path P

val (f*) = 2C

#of augmentations = 2C

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest path")
 - Shortest augmenting paths ("shortest path")

Maximum-capacity augmenting path

Max min c(e) s-t potths P e & P M Gf

- Can find the maximum-capacity augmenting path in time $O(m \log n)$ using a variant of Prim's or Kruskal's MST
 - Exercise for the reader

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in *G_f*:
- # of aug paths:

- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a fattest augmenting s-t path with capacity B
- Claim: $B \ge \frac{v^*}{m}$ [filtere is no path u) cop > B flor $v^* \le B^*m$

equacty of fathert path

4B

- · Consider G' containing only edges u) capacity >B · s-t muit be disconnected in this graph
- 46 LB
- · cop(A,B) = m·B
- $\cdot v^* \leq m \cdot B$

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f :\leq v^* 1$
- # of aug paths: $\leq v^*$

After T augmentat

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: $\gg \sqrt{m}$

• Flow remaining in
$$G_f: \leq \sqrt{m} - \frac{\sqrt{m}}{m}$$

• # of aug paths: $= (1 - \frac{1}{m}) \cdot \sqrt{m}$

• # of aug paths: $\leq m \cdot \ln(\sqrt{n})$

nons there is
$$\gamma^{(1)} \cdot (1 - \frac{1}{m})^T \leq \gamma^{(2)} \cdot e^{-T/m}$$

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest path")
 - $\leq m \ln v^*$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln n \ln v^*)$ total running time
 - See KT for a slightly faster variant ("fat enough path")
 - Shortest augmenting paths ("shortest path")

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities $\frac{nm}{2}$ augmentations suffice
 - Overall running time $O(m^2n) \xrightarrow{} bass of O(mn)$ time algo
 - Works for any capacities!
- Warning: proof is very tricky (you will not be tested on it)

- Let f_i be the flow after the *i*-th augmenting path
- Let $G_i = G_{f_i}$ be the *i*-th residual graph
 - $f_0 = 0$ and $G_0 = G$
- Let $L_i(v)$ be the distance from s to v in G_i
 - Recall that the shortest path in G_i moves layer-by-layer

• Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear

- Key Property: each edge disappears at most $\frac{n}{2}$ times
 - Means that there are at most $\frac{mn}{2}$ augmentations

- Claim 1: for every $v \in V$ and every $i, L_{i+1}(v) \ge L_i(v)$
 - Obvious for v = s because $L_i(s) = 0$
 - Suppose for the sake of contradiction that $L_{i+1}(v) < L_i(v)$
 - Let v be the smallest such node
- after any i, v gets obser to s • Let $s \sim u \rightarrow v$ be a shortest path in G_{i+1} laye haplage (• By optimality of the path, $L_{i+1}(v) = L_{i+1}(u) + 1$ by choose of v [• By assumption, $L_{i+1}(u) \ge L_i(u)$ $L_{i+1}(v) = L_{i+1}(u) + 1$ $\frac{1}{2} L_{i}(u) + 1$ • Two Cases:
 - $(u, v) \in G_i$, so $L_i(v) \leq L_i(u) + 1$ $L_{i+1}(v) \neq L_{i+1}(u) + 1 \gg L_i(u) + 1 \gg L_i(v)$
 - $(u, v) \notin G_i$, so (v, u) was in the *i*-th path, so $L_i(v) = L_i(u) 1$

 $|_{i+1}(v) = L_{i+1}(u) + |_{>} L_i(u) + |_{=} L_i(v) + 2$

- Claim 2: If an edge $u \rightarrow v$ disappears from G_i and reappears in $\begin{array}{l} G_{j+1} \ \text{then} \ L_j(u) \geq L_i(u) + 2 \\ \bullet \ u \rightarrow v \ \text{is on the } i\text{-th augmenting path, } L_i(v) = L_i(u) + 1 \end{array}$

 - $v \rightarrow u$ is on the *j*-th augmenting path, $L_i(u) = L_i(v) + 1$
 - By Claim 1: $L_i(v) \ge L_i(v)$

$$L_{j}(u) = L_{j}(v) + 1 \gg L_{i}(v) + 1 = L_{i}(u) + 1 + 1$$

- Every augmentation causes , one edge to disappear
 At must m edges, so at most min disappearances
- "At most my argmenting paths

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest path")
 - $\leq m \ln v^*$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln n \ln v^*)$ total running time
 - See KT for a slightly faster variant ("fat enough path")
 - Shortest augmenting paths ("shortest path")
 - $\leq \frac{mn}{2}$ augmenting paths (for any capacities)
 - $O(m^2n)$ total running time

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Different choices of augmenting paths give different running times

I an active area of research! $O(m^{2/5}n^{4/5}\log^2 \sqrt{n}) O(m^{10/7}) O(mn)$ O(mn)Still an active area of research!

• Can solve many problems efficiently via reductions to the maximum flow or minimum cut problems