
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	17:	
• Network	Flow

• Choosing	Good	Augmenting	Paths

Mar	20,	2018

Recap
• Directed	graph	! = #, %
• Two	special	nodes:	source	& and	sink	=	'
• Edge	capacities	()

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Recap
• An	s-t	flow is	a	function	*) such	that

• For	every) ∈ %,	0 ≤ *) ≤ () (capacity)
• For	every	. ∈ %,	∑ *)�

1	34	56	7 = ∑ *)�
1	685	69	7 (conservation)

• The	value of	a	flow	is	.:; * = 	∑ *)�
1	685	69	<

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Recap
• MaxFlow =	Find	an	s-t	flow	of	maximum	value

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Recap
• An	s-t	cut is	a	partition	(>, ?) of	# with	& ∈ > and	' ∈ ?

• The	capacity of	a	cut	(A,B)	is	(:A >, ? = ∑ ()�
1	685	69	B

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Recap
• MinCut:	Find	an	s-t	cut	of	minimum	capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Ford-Fulkerson	Algorithm
• Start	with	*) = 0 for	all) ∈ %
• While

• There	is	an	augmenting	path C in	the	residual	graph !D
• Augment	flow	along	the	path	C

s

1

2

t

10

10

20 0

0 20

20

20

20

30

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow

• Running	time	is	O(m)	per	augmentation	step
• O(val(f*))	augmentinations in	any	graph	with	integer	capacities
• O(n)	augmentations	in	graphs	with	unit	capacities

• MaxFlow-MinCut Theorem:	The	value	of	the	max	s-t	flow	
equals	the	capacity	of	the	min	s-t	cut	
• If	*∗ is	a	max	flow,	the	nodes	reachable	from	s	in	!D∗ are	a	min	cut
• Given	a	max	flow,	can	find	a	min	cut	in	time	O(n+m)	via	BFS

Recap
• Two	Problems:

• MaxFlow: given	a	network	G=(V,E),	capacities	c(e),	source	s,	sink	t,	
find	the	s-t	flow	of	maximum	value

• MinCut:	given	a	network	G=(V,E),	capacities	c(e),	source	s,	sink	t,	
find	the	s-t	cut	of	minimum	value

• Ford-Fulkerson	Algorithm:
• Start	with	the	empty	flow	f(e)	=	0
• While	there	is	an	augmenting	path	P	in	the	residual	graph	!D,	
increase	f	along	the	path

Ford-Fulkerson	Algorithm
• Start	with	*) = 0 for	all) ∈ %
• While

• There	is	an	augmenting	path C in	the	residual	graph !D
• Augment	flow	along	the	path	C

s

1

2

t

C

C

C

C

1

Choosing	Good	Paths
• Last	time:	arbitrary	augmenting	paths

• If	FF	terminates,	it	outputs	a	maximum	flow	

• Today:	clever	augmenting	paths
• Maximum-capacity	augmenting	path	(“fattest	path”)
• Shortest	augmenting	paths	(“shortest	path”)

Fattest	Augmenting	Path

Fattest	Augmenting	Path
• Maximum-capacity	augmenting	path

• Can	find	the	maximum-capacity	augmenting	path	in	time	
F G log K using	a	variant	of	Prim’s	or	Kruskal’s MST
• Exercise	for	the	reader

Arbitrary	Paths

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:	≥ 1

• Flow	remaining	in	!D:	≤ .∗ − 1

• #	of	aug paths:	≤ .∗

Maximum-Capacity	Path

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:

• Flow	remaining	in	!D:	

• #	of	aug paths:

Fattest	Augmenting	Path

Fattest	Augmenting	Path
• *∗ is	a	maximum	flow	with	value	.∗ = .:; *∗
• C is	a	fattest	augmenting	s-t	path	with	capacity	?
• Claim:	? ≥ 7∗

O

s

2

3

4

5 t10

10

9

8

4

9

1062

Arbitrary	Paths

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:	≥ 1

• Flow	remaining	in	!D:	≤ .∗ − 1

• #	of	aug paths:	≤ .∗

Maximum-Capacity	Path

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:

• Flow	remaining	in	!D:	

• #	of	aug paths:

Fattest	Augmenting	Path

Choosing	Good	Paths
• Last	time:	arbitrary	augmenting	paths

• If	FF	terminates,	it	outputs	a	maximum	flow	

• Today:	clever	augmenting	paths
• Maximum-capacity	augmenting	path	(“fattest	path”)

• ≤ G ln .∗ augmenting	paths	(assuming	integer	capacities)
• F(GQ ln K ln .∗) total	running	time
• See	KT	for	a	slightly	faster	variant	(“fat	enough	path”)

• Shortest	augmenting	paths	(“shortest	path”)

Shortest	Augmenting	Path

Shortest	Augmenting	Path
• Find	the	augmenting	path	with	the	fewest	hops

• Can	find	shortest	augmenting	path	in	O(m)	time	using	BFS

• Theorem: for	any	capacities	ROQ augmentations	suffice
• Overall	running	time	F GQK
• Works	for	any	capacities!	

• Warning: proof	is	very	tricky	(you	will	not	be	tested	on	it)

Shortest	Augmenting	Path
• Let	*S be	the	flow	after	the	T-th augmenting	path
• Let	!S = !DU be	the	T-th residual	graph

• *V = 0 and	!V = !
• Let	WS . be	the	distance	from	s	to	v	in	!S

• Recall	that	the	shortest	path	in	!S moves	layer-by-layer

s

2

3

4

5 t10

10

9

8

4

9

1062

Shortest	Augmenting	Path
• Every	augmentation	causes	at	least	one	edge	to	disappear	
from	the	residual	graph,	may	also	cause	an	edge	to	appear

• Key	Property:	each	edge	disappears	at	most	RQ times
• Means	that	there	are	at	most	ORQ augmentaitons

Shortest	Augmenting	Path
• Claim	1:	for	every	. ∈ # and	every	T,	WSXY . ≥ WS .

• Obvious	for	. = & because	WS & = 0
• Suppose	for	the	sake	of	contradiction	that	WSXY . < WS(.)

• Let	. be	the	smallest	such	node
• Let	&	 ↝ \ → . be	a	shortest	path	in	!SXY

• By	optimality	of	the	path,	WSXY . = WSXY \ + 1
• By	assumption,	WSXY \ ≥ WS \

• Two	Cases:
• \, . ∈ !S,	so	WS . ≤ WS \ + 1

• \, . ∉ !S,	so	 ., \ was	in	the	T-th path,	so	WS . = WS \ − 1	

Shortest	Augmenting	Path
• Claim	2:	If	an	edge	\ → . disappears	from	!S and	reappears	in	
!̀ XY	 then	Ẁ \ ≥ WS \ + 2
• \ → . is	on	the	T-th augmenting	path,	WS . = WS \ + 1
• . → \ is	on	the	b-th augmenting	path,	Ẁ \ = Ẁ . + 1
• By	Claim	1:	Ẁ . ≥ WS .

Choosing	Good	Paths
• Last	time:	arbitrary	augmenting	paths

• If	FF	terminates,	it	outputs	a	maximum	flow	

• Today:	clever	augmenting	paths
• Maximum-capacity	augmenting	path	(“fattest	path”)

• ≤ G ln .∗ augmenting	paths	(assuming	integer	capacities)
• F(GQ ln K ln .∗) total	running	time
• See	KT	for	a	slightly	faster	variant	(“fat	enough	path”)

• Shortest	augmenting	paths	(“shortest	path”)
• ≤ OR

Q augmenting	paths	(for	any	capacities)
• F(GQK) total	running	time

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow

• Different	choices	of	augmenting	paths	give	different	running	times

• Still	an	active	area	of	research!

• Can	solve	many	problems	efficiently	via	reductions to	the	
maximum	flow	or	minimum	cut	problems

