CS4800: Algorithms \& Data Jonathan Ullman

Lecture 17:

- Network Flow
- Choosing Good Augmenting Paths

Mar 20, 2018

Recap

- Directed graph $G=(V, E)$
- Two special nodes: source s and sink = t
- Edge capacities $c(e)$

Recap

- An s-t flow is a function $f(e)$ such that
- For every $e \in E, 0 \leq f(e) \leq c(e)$
(capacity)
- For every $v \in E, \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ (conservation) (excepts,t)

Recap

- MaxFlow = Find an s-t flow of maximum value

Recap

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A, B) is $\operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

Recap

- MinCut: Find an s-t cut of minimum capacity

$$
\operatorname{cap}(A, B)=\sum_{e \text { from } A \text { to } B} c(e)
$$

- Weak Duality Theorems For any flow $f, \cot (P, B), \operatorname{val}(f) \leq \operatorname{cop}(A, B)$

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all $e \in E$

An st path sit. you can \rightarrow send more flow along the path.

- While
- There is an augmenting path P in the residual graph G_{f}
- Augment flow along the path P

records how much +flow from $u \rightarrow v$ how much - flow from $v \rightarrow u$

Ford-Fulkerson Demo
G :

Ford-Fulkerson Demo

$G:$

Ford-Fulkerson Demo

$G:$

$G_{f}:$

Ford-Fulkerson Demo

$G:$

$G_{f}:$

FordFulkerson Demo $A=\{s, 3\} \quad B=\{2,4,5,+\}$
Ford-Fulkerson Demo $\operatorname{val}(f)=19 \quad \cos (A, B)=19$
G :

Summary

－The Ford－Fulkerson Algorithm solves maximum s－t flow
－Running time is $\mathrm{O}(\mathrm{m})$ per augmentation step
－回相絍䊉 augmentinations in any graph with integer capacities
－ $\mathrm{O}(\mathrm{n})$ augmentations in graphs with unit capacities

－MaxFlow－MinCut Theorem：The value of the max s－t flow equals the capacity of the min s－t cut
－If f^{*} is a max flow，the nodes reachable from s in $G_{f^{*}}$ are a min cut
－Given a max flow，can find a min cut in time $O(n+m)$ via BFS

Recap

- Two Problems:
- MaxFlow: given a network $G=(V, E)$, capacities $c(e)$, source s, sink t, find the s-t flow of maximum value
- MinCut: given a network $G=(V, E)$, capacities $c(e)$, source s, sink t, find the s-t cut of minimum value
- Ford-Fulkerson Algorithm:
- Start with the empty flow $f(e)=0$
- While there is an augmenting path P in the residual graph G_{f}, increase f along the path

Ford-Fulkerson Algorithm

$$
\begin{aligned}
& \operatorname{val}\left(f^{*}\right)=2 C \\
& \text { *of augmentations }=2 C
\end{aligned}
$$

- Start with $f(e)=0$ for all $e \in E$
- While
- There is an augmenting path P in the residual graph G_{f}
- Augment flow along the path P

$$
\begin{aligned}
& \stackrel{+1}{+1} 1 \xrightarrow{+1} 2 \xrightarrow{+1}+1 \\
& s \xrightarrow{+1} 2 \xrightarrow{-1} 1 \xrightarrow{+1} t+1 \\
& s \xrightarrow{+1} 1 \xrightarrow{+1} 2 \xrightarrow{+1} t
\end{aligned}
$$

Ideas: "Choose the "forest path"

- Choose the "shorted path"

Choosing Good Paths

- Last time: arbitrary augmenting paths
- If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
- Maximum-capacity augmenting path ("fattest path")
- Shortest augmenting paths ("shortest path")

Fattest Augmenting Path

Fattest Augmenting Path

- Maximum-capacity augmenting path

- Can find the maximum-capacity augmenting path in time $O(m \log n)$ using a variant of Prim's or Kruskal's MST
- Exercise for the reader

Fattest Augmenting Path

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path: ≥ 1
- Flow remaining in $G_{f}: \leq v^{*}-1$
- \# of aug paths: $\leq v^{*}$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path:
- Flow remaining in G_{f} :
- \# of aug paths:

Fattest Augmenting Path eapacty of fatter t path

- f^{*} is a maximum flow with value $v^{*}=\operatorname{val}\left(f^{*}\right)$
- P is a fattest augmenting st path with capacity X
- Claim: $B \geq \frac{v^{*}}{m} \quad$ If there is no path ul cap $>B$ then $v^{R} \leq B \cdot m$
- Consider G'contaming only edges w/ capacity >B - set must be disconnected in this graph

$$
\cdot \operatorname{cap}(A, B) \leq m \cdot B
$$

at mort m edges from A to B

Fattest Augmenting Path

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path: ≥ 1
- Flow remaining in $G_{f}: \leq v^{*}-1$
- \# of aug paths: $\leq v^{*}$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path: $\geqslant V^{*} / m$
- Flow remaining in $G_{f}: \leqslant v^{m}-\frac{v^{m}}{m}$
- \# of aug paths: $\leq m \cdot \ln \left(v^{*}\right)$
$=\left(1-\frac{1}{m}\right) \cdot v^{*}$

After T augmentations there is $V^{\infty} \cdot\left(1-\frac{1}{m}\right)^{\top} \leq V^{B} \cdot e^{-1}$ If $T>m \cdot \ln \left(v^{*}\right)$ then flow remaining is <1

Choosing Good Paths

- Last time: arbitrary augmenting paths
- If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
- Maximum-capacity augmenting path ("fattest path")
- $\leq m \ln v^{*}$ augmenting paths (assuming integer capacities)
- $O\left(m^{2} \ln n \ln v^{*}\right)$ total running time
- See KT for a slightly faster variant ("fat enough path")
- Shortest augmenting paths ("shortest path")

Shortest Augmenting Path

Shortest Augmenting Path

- Find the augmenting path with the fewest hops
- Can find shortest augmenting path in $\mathrm{O}(\mathrm{m})$ time using BFS
- Theorem: for any capacities $\frac{n m}{2}$ augmentations suffice
- Overall running time $O\left(m^{2} n\right) \longrightarrow$ basio of $O(m n)$ time algs
- Works for any capacities!
- Warning: proof is very tricky (you will not be tested on it)

Shortest Augmenting Path

- Let f_{i} be the flow after the i-th augmenting path
- Let $G_{i}=G_{f_{i}}$ be the i-th residual graph
- $f_{0}=0$ and $G_{0}=G$
- Let $L_{i}(v)$ be the distance from s to v in G_{i}
- Recall that the shortest path in G_{i} moves laver-by-layer

Shortest Augmenting Path

- Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear
- Key Property: each edge disappears at most $\frac{n}{2}$ times
- Means that there are at most $\frac{m n}{2}$ augmentaitons

Shortest Augmenting Path

- Claim 1: for every $v \in V$ and every $i, L_{i+1}(v) \geq L_{i}(v)$
- Obvious for $v=s$ because $L_{i}(s)=0$
- Suppose for the sake of contradiction that $\underbrace{}_{i+1}(v)<L_{i}(v)$
- Let v be the smallest such node
- Let $s \sim u \rightarrow v$ be a shortest path in G_{i+1} doses to s
laye-by-lage (- By optimality of the path, $L_{i+1}(v)=L_{i+1}(u)+1$
by chore of v By assumption, $L_{i+1}(u) \geq L_{i}(u)$
- Two Cases:

$$
L_{i+1}(y)=L_{i+1}(u)+1
$$

- $(u, v) \in G_{i}$, so $L_{i}(v) \leq L_{i}(u)+1$

$$
L_{i+1}(v) \geqslant L_{i+1}(u)+1 \geqslant L_{i}(u)+1 \geqslant L_{i}(v)
$$

- $(u, v) \notin G_{i}$, so (v, u) was in the i-th path, so $L_{i}(v)=L_{i}(u)-1$

$$
L_{i+1}(v)=L_{i+1}(u)+1 \geqslant L_{i}(u)+1=L_{i}(v)+2
$$

Because augmesting poth is the shotest $\rho^{\text {ath }}$

Shortest Augmenting Path

- Claim 2: If an edge $u \rightarrow v$ disappears from G_{i} and reappears in G_{j+1} then $L_{j}(u) \geq L_{i}(u)+2$ shortest paths go laye-by lager
- $u \rightarrow v$ is on the i-th augmenting path, $L_{i}(v)=L_{i}(u)+1$
- $v \rightarrow u$ is on the j-th augmenting path, $L_{j}(u)=L_{j}(v)+1$
- By Claim 1: $L_{j}(v) \geq L_{i}(v)$

$$
L_{j}(u)=L_{j}(v)+1 \geqslant L_{i}(x)+1=L_{i}(u)+1+1
$$

- Every augmentation cases \geqslant ore edge to disappear
- At must m edges, so at most $\frac{m n}{2}$ disappearances
- At most $\frac{m n}{2}$ augmenting paths

Choosing Good Paths

- Last time: arbitrary augmenting paths
- If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
- Maximum-capacity augmenting path ("fattest path")
- $\leq m \ln v^{*}$ augmenting paths (assuming integer capacities)
- $O\left(m^{2} \ln n \ln v^{*}\right)$ total running time
- See KT for a slightly faster variant ("fat enough path")
- Shortest augmenting paths ("shortest path")
- $\leq \frac{m n}{2}$ augmenting paths (for any capacities)
- $O\left(m^{2} n\right)$ total running time

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
- Different choices of augmenting paths give different running times
- Still an active area of research!

- Can solve many problems efficiently via reductions to the maximum flow or minimum cut problems

