

CS4800: Algorithms & Data Jonathan Ullman

Lecture 16:

- Network Flow
 - MaxFlow-MinCut Duality
 - Ford Fulkerson

Mar 11/18, 2018

Flow Networks

Flow Networks

- Directed graph G = (V, E)
- Two special nodes: source *s* and sink = *t*
- Edge capacities c(e)

Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity) \checkmark
 - For every $\mathcal{V} \in \mathcal{E}$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation) $\mathbf{v} \in \mathbf{E} \setminus \{s, t\}$
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$

Ask the Audience

- True or False? There is always a flow such that every edge e leaving the source s is saturated with f(e) = c(e)
 - Explain why or give a counterexample

Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut problem

• Find an s-t cut of minimum capacity

Flows vs. Cuts

• Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s

Flows vs. Cuts max flow & mon cut

• Weak Duality: Let f be any s-t flow and (A, B) any s-t cut,

 $val(f) \leq cap(A, B)$

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \quad (by \text{ fact})$$

$$\leq \sum_{e \text{ out of } A} f(e) \quad (by \text{ non-negativity})$$

$$\geq \sum_{e \text{ out of } A} c(e) \quad (by \text{ cap constraint})$$

$$\equiv cap(A,B) \quad (by \text{ definition})$$

Flows vs. Cuts

• Weak Duality: Let f be any s-t flow and (A, B) any s-t cut,

 $val(f) \leq cap(A, B)$

Observation: If fis a flow and (A,B) is a cut and val(f) = cap(A,B) then f is a max flow and (A,B) is a mineut.

Greedy Max Flow, a feasible flow

- Start with f(e) = 0 for all edges $e \in E$
- Find an s-t path P where every edge has f(e) < c(e)
- Augment flow along the path $P \longrightarrow find the bufflereck"$
- Repeat until you get stuck

b= mm c(e)-f(e) eEP

· add b to each edge

each	path	is an augmention of
path	and	the process
is calle	d an	arguaestation

Does Greedy Work?

- Take I gets stuck before finding the optimum
- How can we get from our solution to the optimum?

Residual Graphs

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e)
- Residual edge
 - Allows "undoing" flow
 - e = (u, v) and $e^{R} = (v, u)$.
 - Residual capacity

- Residual graph $G_f = (V, E_f)$
 - Edges with positive residual capacity.
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}.$

Augmenting Paths in Residual Graphs

• Let G_f be a residual graph

- $(\widehat{s}) \xrightarrow{6}_{e_1} (\widehat{u}) \xrightarrow{q}_{e_2} (\widehat{v}) \xrightarrow{3}_{e_3} (\widehat{v}) \xrightarrow{7}_{e_3} (\widehat{v}) \xrightarrow{7$
- Let P be a path in the residual graph
- Fact: $f' = \text{Augment}(G_f, P)$ is a valid flow

```
Augment(G<sub>f</sub>, P)
             b \leftarrow the minimum capacity of an edge in P
             for e \in P
                  if e \in E: f(e) \leftarrow f(e) + b
                  else: f(e) \leftarrow f(e) - b
             return f
                                             Key Fact. If fis feasible
Hen Augment (G.F.P)
is also feasible.
                 f(e_{1}) += 3
                 f(e_{2}) = 3
b=3
                 f(e_3) = -3
                 f(e_{y}) += 3
```

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an s-t path P in the residual graph G_f
- Augment flow along the path P
- Repeat until you get stuck

20

Note: conservation still

satisfied

Ford-Fulkerson Algorithm

```
FordFulkerson(G,s,t,{c})

for e \in E: f(e) \leftarrow 0

G<sub>f</sub> is the residual graph

while (there is an s-t path P in G<sub>f</sub>)

f \leftarrow Augment(G<sub>f</sub>, P)

update G<sub>f</sub>

return f
```

Ford-Fulkerson Demo

S

3

2

5

4

 (\dagger)

What do we want to prove?

- · Feasibilty: FF outputs a feasible flow V
- · Maximality / Termmates :
- · Running Time:

Running Time of Ford-Fulkerson Assumption: G has integer capacities (termination is clear) • For integer capacities, $\leq val(f^*)$ augmentation steps

- Can perform each augmentation step in O(m) time
 - find augmenting path in O(m) (BFS)
 - augment the flow along path in O(n)
 - update the residual graph along the path in O(n)
- For integer capacities, FF runs in $O(m \cdot val(f^*))$ time

 - $\begin{cases} \bullet \ O(mn) \text{ time if all capacities are } c_e = 1 \\ \bullet \ O(mnC_{\max}) \text{ time for any integer capacities} \\ \bullet \text{ Problematic when capacities are large-more on this later!} \end{cases}$

- Theorem: f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f If FF termnates, fis max flow
- MaxFlow-MinCut Duality: The value of the maximum s-t flow equals the capacity of the minimum s-t cut
- We'll prove that the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

- Theorem: the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

(1)
$$\Rightarrow$$
 (2) $\forall f, (A,B)$ val $(f) \leq cap(A,B)$
(2) \Rightarrow (3) If there were an augmenting path of f then Augment (Gf, P) is better, so first max

hard part is $(3) \Longrightarrow (1)$

- $(3 \rightarrow 1)$ If there is no augmenting path in G_f , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f

• Let *B* be all other nodes Observation: In Gf, there are no edges from AtoB. ($(\hat{\epsilon})$ A

- $(3 \rightarrow 1)$ If there is no augmenting path in G_f , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes
 - Key observation: no edges in G_f go from A to B (but in G some can)

• If
$$e$$
 is $A \to B$, then $f(e) = c(e)$

• If $e ext{ is } B \to A$, then f(e) = 0

 $val(f) = \sum f(e) - \sum f(e)$ e ort of A e mto A

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
 - Space O(n+m)
- MaxFlow-MinCut Duality: The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f* is a maximum s-t flow, then the set of nodes reachable from s in G_{f*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n + m)

Ask the Audience

• Is this a maximum flow?

- Is there an integral maximum flow?
- Does every graph with integral capacities have an integral maximum flow?

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
 - Space O(n+m)
- MaxFlow-MinCut Duality: The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f* is a maximum s-t flow, then the set of nodes reachable from s in G_{f*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n + m)
- Every graph with integral capacities has an integral maximum flow
 - Ford-Fulkerson will return an integral maximum flow