
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	12:	
• Graph	Search:	BFS	Applications,	DFS

Feb	20,	2018

BFS	Review

• BFS	Algorithm:
• Input:	source	node	!
• "# = !
• "% = all	neighbors	of	"#
• "& = all	neighbors	of	"% that	are	not	in	"#, "%
• …
• "(= all	neighbors	of	"()% that	are	not	in	"#, … , "()%

BFS	Review

Set	found 0 ← false for	every	node	0
BFS(6):
Initialize	found ! ← true
Initialize	9 ← 0,	"# ← ! ,	; ← ∅
While	("= is	not	empty):
Initialize	a	new	layer	"=>% ← ∅
For	(? ∈ "=):
For	(?, 0 ∈ A):
If	(found 0 = false)	Then:
Set	found 0 ← true
Add	(?, 0) to	;,	add	0 to	"=>%

Increment	the	layer	9 ← 9 + 1

BFS	Review

• BFS	this	graph	from	s=1

BFS	Review

• Last	time	we	saw	that	BFS	can…
• … find	the	set	of	nodes	that	are	reachable	from	!
• … find	the	distances	from	! to	all	other	nodes	F
• … find	shortest	paths	from	! to	all	other	nodes	F
• ...	find	a	cycle	in	an	undirected	graph
• … identify	connected	components	in undirected	graphs

• Today:
• Using	BFS	to…

• … split	the	nodes	into	two	“teams”	(2-coloring/bipartiteness)
• … find	strongly	connected	components in	directed graphs

• Topological	Sort
• DFS	(Depth-First	Search)

2-Coloring/Bipartiteness

2-Coloring

• Problem:	Tug-of-War	Rematch
• Need	to	form	two	teams	G, H
• Some	students	are	still	mad	from	last	time…

• Input:	Undirected	graph	I = J, A
• ?, 0 ∈ A means	?, 0 can’t	be	on	then	same	team

• Output: Split	J into	two	sets	G, H so	that	no	pair	in	
either	set	is	connected	by	an	edge

2-Coloring/Bipartiteness

• Alternative	Phrasing: Is	the	graph	I bipartite?

Designing	the	Algorithm

• Optimistic	Algorithm:
1. Pick	an	arbitrary	start	node	!
2. BFS	the	graph	from	!,	coloring	nodes	as	you	find	them
3. Color	nodes	in	layer	9 purple if	9 even,	red if	9 odd
4. See	if	you	found	a	legal	coloring

Correctness?

• If	you	2-colored	the	graph	successfully,	the	graph	
can	be	2-colored	successfully
• If	you	have	not	2-colored	the	graph	successfully,	
maybe	you	should	just	try	harder?

Correctness?

• Key	Fact:	If	I has	an	odd-length	cycle	then	there	is	
no	legal	2-coloring

BFS	in	Directed	Graphs
(Strongly)	Connected	Components

BFS	in	Directed	Graphs

• BFS	works	in	directed	graphs

Adjacency	Lists	for	Directed	Graphs

• The	adjacency	list of	a	vertex	0 ∈ J is	the	list	
KLMN[0] of	all	edges	 0, ? ∈ A and	the	list	K=Q 0
of	all	edges	 ?, 0 ∈ A

2 1

3 4

• KLMN 1 = 2,3
• KLMN 2 = 3
• KLMN 3 = 	
• KLMN 4 = 3

• K=Q 1 = {}
• K=Q 2 = 1
• K=Q 3 = 1,2,4
• K=Q 4 = {}

Connected	Components

• An	undirected graph	I is	connected if	for	every	pair	
of	nodes	?, 0 ∈ J,	? is	reachable	from	0
• The	connected	component of	! is	the	set	of	nodes	
reachable	from	!
• Can	partition I into	connected	components

Strongly	Connected	Components

• A	directed graph	I is	strongly	connected if	for	
every	pair	?, 0 ∈ J,	?, 0 are	mutually	reachable
• The	strongly	connected	component of	! is	the	set	
of	nodes	F such	that	!, F are	mutually	reachable

Strongly	Connected	Components

• A	directed graph	I is	strongly	connected if	for	
every	pair	?, 0 ∈ J,	?, 0 are	mutually	reachable
• The	strongly	connected	component of	! is	the	set	
of	nodes	F such	that	!, F are	mutually	reachable

Ask	the	Audience

• Partition	I into	strongly	connected	components

Strongly	Connected	Components

• Problem:	Given	! find	XYY !
• Algorithm:

Connected	Components	Recap

• Partition	an	undirected graph	into	connected	
components	in	Z [+\ time
• Test	if	a	directed graph	is	strongly	connected	in	
Z [+\ time
• Find	the	strong	component	of	! in	Z [+\ time
• Can	partition	in	Z([+\) with	more	cleverness

• Upshot:	we	tend	to	assume	graphs	are	connected

Topological	Sort

Acyclic	Graphs

• Acyclic	Graph: An	undirected	graph	with	no	cycles.
• Can	test	if	a	graph	has	a	cycle	in	Z [+\ time
• An	acyclic	undirected	graph	is	called	a	forest

Directed	Acyclic	Graphs	(DAGs)

• DAG:	A	directed graph	with	no	directed cycles
• Can	be	much	more	complex	than	a	forest

Directed	Acyclic	Graphs	(DAGs)

• DAG:	A	directed graph	with	no	directed cycles
• DAGs	represent	precedence relationships

• A	topological	ordering of	a	directed	graph	is	a	
labeling	of	the	nodes	from	0%, … , 0Q so	that	all	
edges	go	“forwards”	 0=, 0] ∈ A ⇒ _ > 9
• I has	a	topological	ordering	⇒I is	a	DAG

Directed	Acyclic	Graphs	(DAGs)

• Problem	1:	given	a	digraph	I,	is	it	a	DAG?
• Problem	2: given	a	digraph	I,	can	it	be	
topologically	ordered?

• Theorem: I has	a	top.	ordering	⟺I is	a	DAG
• We	will	design	one	algorithm	that	either	outputs	a	
topological	ordering	or	finds	a	directed	cycle

Topological	Ordering

• Simple	Observation:	the	first	node	must	have	no	
incoming	edges

• In	any	DAG,	there	is	a	node	with	no	incoming	edges

Topological	Ordering

• In	any	DAG,	there	is	a	node	with	no	incoming	edges
• Theorem: Every	DAG	has	a	topological	ordering
• Proof	by	Induction:

• Base	Case (n=1):	Trivial
• Inductive	Step:

Implementing	Topological	Ordering

• Simple	Algorithm:
1. Set	9 ← 1
2. Until	we’re	out	of	nodes

a) Find	a	node	b with	no	incoming	edges,	label	it	0=
b) Eliminate	b and	all	its	edges

Fast	Topological	Ordering

1. Set	all	nodes	to	active
2. Label	nodes	with	#	of	incoming	edges	from	active	nodes
3. Let	X be	a	set	of	active	nodes	with	label	0	
4. Find	a	node	b with	label	0	and	add	it	to	X
5. Set	9 ← 1	
6. Until	we’re	out	of	nodes

a) Choose	a	node	in	b ∈ X call	it	0=
b) For	every	edge	(b, ?),	decrease	?’s	label,	if	?’s	label	drops	to	0	

then	add	it	to	the	set	X
c) Increment	9 ← 9 + 1

Allow	me	to	geek	out	for	a	minute

• We	saw	the	first	example	of	two	amazing	themes:
• Using	algorithms	to	prove	mathematical	facts

• I is	bipartite	⟺I contains	no	odd	cycles
• “Duality”

• An	odd	cycle	is	an	obvious	obstruction	to	2-coloring
• Odd	cycles	are	the	only obstructions	to	2-coloring

• This	theme	is	ubiquitous	in	algorithms
• MaximumFlow/MinimumCut
• BipartiteMatching/VertexCover
• LinearProgramming
• ZeroSumGames

Midterms

Midterm	Grade	Distribution

<35 >	8575-8565-7555-6545-5535-45

AAA/BBBB/CC

Mean	≈ 67

• Letter	grades	are	highly	approximate
• Approximate	letter	grades	consider	MT1	only

HW	Grade	Distribution

<55
55-60

Mean	≈ 77

• Chart	does	not	reflect	dropping	the	lowest	HW

60-65
65-70 75-80 85-90 >95

70-75 80-85 90-95

