(\/\}A&Jrermg \OQCL O&ﬂu Clasg_

Malke sore \S‘(‘OP at |15
CS4800: Algorithms & Data
Jonathan Ullman

Lecture 12:
 Graph Search: BFS Applications, DFS

Feb 20, 2018

BFS Review ”
G\\ren 23 araf\o G-‘—C\/) E} ancJ\ a souviee 5€—\/

* BFS Algorithm:
* Input: source node s
* Lo ={s}
* L = all neighbors of L,
* L, = all neighbors of L, that are notin L, L4

* L; = all neighbors of L;_4 thatarenotin Ly, ..., L 1

A‘gor\ﬂﬂm m&\3€S NI QOJ cj.wcjcecﬁ of UﬂOLWQJCacJ

BFS Review fime: 2 0(deg()+1) = Olasm)

weV

Set found[v] « false for every node v
BFS(s):
Initialize found|[s] < true
Initializei « 0, Ly « {s}, T « @
While (L; is not empty):
Initialize a new layer L; 1 « @

For (u € L;):
For ((u,v) € E): Ruanson Jme_ B
If (found[v] = false) Then: most|
Set found|[v] < true to e;@gcc eac)r nadg)

Add (u,v)toT,addvtoL;,q
Increment the layeri <« i + 1

BFS Review

* BFS this graph from s=1

TOINR
\\"l ' Anﬁ 0rongg 60!@}? madkes acijda

‘ [I (unAlNﬁQJB

BFS Review

* Last time we saw that BFS can...
* ... find the set of nodes that are reachable from s
* ... find the distances from s to all other nodes ¢
* ... find shortest paths from s to all other nodes ¢
... find a cycle in an undirected graph
e ... identify connected components in undirected graphs
* Today:
* Using BFS to...
 ...split the nodes into two “teams” (2-coloring/bipartiteness)
e ...find strongly connected components in directed graphs

« Topological Sort/O¢des
* DFS (Depth-First Search)

2-Coloring/Bipartiteness

2-Coloring

* Problem: Tug-of-War Rematch
* Need to form two teams R, P
* Some students are still mad from last time...

* Input: Undirected graph G = (V,E)

* (u,v) € E means u, v can’t be on then same team

* Qutput: Split V into two sets R, P so that no pair in
either set is connected by an edge or say nst possible

H—
s

no

2-Coloring/Bipartiteness

 Alternative Phrasing: Is the graph G bipartite?

f\%{(cu‘\"u'(‘ ¢ Gruph

VZTZUP ok o e&%ﬂ.
@—' i@ (\,{/'\J-\ \/\Qs ()L/\;Gf&of (}7\;6’?

SUQQO&Q G‘ S \9»‘?0\(’\"'{’6 / Glﬁ& 78 2'(o\orm8
= 6

°%FS (gmm @J nodz\ |
2 Y meH\LB D~colov
4 A

D

B OO Y
o}

Lo L L. Ls L

Designing the Algorithm

* Optimistic Algorithm: C)(Y*W‘) e
1. Pick an arbitrary start node s
2. BFS the graph from s, coloring nodes as you find them
3. Color nodesin layer i purple if i even, red if i odd
4. See if you found a legal coloring

Correctness?

* If you 2-colored the graph successfully, the graph
can be 2-colored successfully

* If you have not 2-colored the graph successfully,

maybe you should just try harder?
. . L") i C-’B

\en. ™ F

| TRl o

Correctness?

* Key Fact: If G has an odd-length cycle then there is
no legal 2-coloring ?mog—bj ~ ks

o

%\’mmafé olC 9\’ Color\\,\(;5

’ CQD 9"50\0(of FY\J\ an oc)lOl cbcksz
iy O(wm\ e .

A 3(‘0()\’\ con be D-co\ored ;(j[) 7‘[’ has
no OOQO! C,LL/)L[QS. is

BFS in Directed Graphs
(Strongly) Connected Components

BFS in Directed Graphs

* BFS works in directed graphs

@)- HE) BES skl fmoyall

@»—»@ podes renchaldle from S

x ond +L<;S\’Drk05/¥ ("/H”
©)

Adjacency Lists for Directed Graphs

* The adjacency list of a vertex v € V is the list
A+ [v] of all edges (v,u) € E and the list A;,[V]
of all edges (u,v) € E

Q e Aouel1] = {2,3} Aip1] = {}

' Aowel2] =3} Aul2] = (1)
Aoue[3] = {3 Ain[3] = {1,2,4}

° ° Apucl4] = {3} Ainl4] = {3

Connected Components

* An undirected graph G is connected if for every pair
of nodesu,v € V, u is reachable from v

* The connected component of s_is the set of nodes
reachable from s vE CCCS\ Hon secc (V)

e Can partition G into connected components
T @ | 56

Bassa)i)

Strongly Connected Components

* A directed graph G is strongly connected if for
every pair u,v € V, u, v are mutually reachable

* The strongly connected component of s is the set
of nodes t such that s, t are mutually reachable

%CC.(D“— nodes M ccls) s+ <€ CC(£)

O—AOFO T |
el = {vyu,t3

CC (\/’3 = %l;()‘fzg
ce (W)= $43

Strongly Connected Components

* A directed graph G is strongly connected if for
every pair u,v € V, u, v are mutually reachable

* The strongly connected component of s is the set
of nodes t such that s, t are mutually reachable

%CC'.(D“— nodes M ccls) s+ <€ CC(£)

ool o0

H: % {GSCC(Q _\'\/{/\ ¢ C scc(®)
"QU\ QCMJ(.’&-*OO nto s/{ronf)\ﬁ C,Oand'QA aom(;om{’g

Ask the Audience

* Partition G into strongly connected components

Strongly Connected Components

* Problem: Given s find SCC(s)
* Algorithm:
1+ Ue BFS -(:'Yvd all nodes Nac\/\G\o\R WCZ: N
M

_s®
% Ltk 6 ke @MLQ\@ —O—0O«®
)

a(\q L,/ -‘-L(same viodeS a POH") wCrOm L To S

’ gr Lack](:

and (u[v\GE & CVJQC-E =>4 oG 1o go T70M S
2. Usa BFS 4o S;\f\O\ 0'“ noiﬂi) "lo N 'ﬁo,lfu"j éﬁégﬂj
reachaale Lo S M G-\W\e Leck Gewd s

4. OukM ‘\‘Le_ 32{’0(1\ nOAQS v recelhal\e m bo”«

Connected Components Recap

 Partition an undirected graph into connected
components in O(n + m) time

» Test if a directed graph is strongly connected in
O(n +m) time oo BFS

* Find the strong component of s in O(n + m) time

(}\E Can partition in O(n + m) with more cIevernessK

Toubtron mto <CCs OCn (mm')j tyne

e Upshot: we tend to assume graphs are connected

Topological Sort

Acyclic Graphs

* Acyclic Graph: An|undirected braph with no cycles.

* Can test if a graph has a cycle in O(n + m) time
* An acyclic undirected graph is called a forest

N

O O O o connec
@}% CB 5 \O ﬂ:(; a "Vf:’_ad
O b

Directed Acyclic Graphs (DAGs) &
O——

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest

o et & ed 5/
(Vl)\/D (Vz,\”D --- (Vp—lovb

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

ﬂ—/‘
OJOROROROYOND

—_—

* A topological ordering of a directed graph is a
labeling of the nodes from v, ..., v, so that all

edges go “forwards” (vi, vj) EE=>]>10
* (¢ has a topological ordering = G is a DAG

\WC C‘ has Q ’foe. OI'JLQJ;\/\S)/’//SQ DAG

Q@

\f agraf\ﬂ hes adN‘echea' c\chg 4 canstlo
fop. ordored

Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Theorem: G has a top. ordering < (is a DAG

* We will design one algorithm that either outputs a
topological ordering or finds a directed cycle

Topological Ordering

* Simple Observation: the first node must have no
incoming edges

OJOROIONORTRO

01[16&54 ore.
* In any DAG, there is'a node with no incoming edges

Qe @e—

KG?() j{D”Odj mCOMW\3 ecda/w LM‘H Jw Q:”._/ nC\J o
A\rc(‘bz» uﬁcu of M o5 OK noJQi

Topological Ordering

* In any DAG, there is a node with no incoming edges
* Theorem: Every DAG has a topological ordering

* Proof by Induction: (\@ mductoen on w\

e Base Case (n=1): Trivial
* Inductive Step: —

> top. ordes o’?(;fﬂ
\j

S

Implementing Topological Ordering

e Simple Algorithm:
1. Seti< 1 do |

2. Until we’re out of nodes

a) Find a node w with no incoming edges, label it v; O(nﬁ
b) Eliminate w and all its edges

@Cﬁ’s A | @/@@

e . O(u®)
o be mpoed 4o Ot

Fast Topological Ordering

Set all nodes to active

Label nodes with # of incoming edges from active nodes
Let S be a set of active nodes with label 0

Find a node w with label 0 and add it to S

Seti «< 1

Until we’re out of nodes
a) Chooseanodeinw € S call it v;

b) For every edge (w,u), decrease u’s label, if u’s label drops to 0
then add it to the set S

c) Incrementi «<i+1

SR A S

Allow me to geek out for a minute

* We saw the first example of two amazing themes:

e Using algorithms to prove mathematical facts
e (is bipartite & G contains no odd cycles

e “Duality”
* An odd cycle is an obvious obstruction to 2-coloring
* Odd cycles are the only obstructions to 2-coloring

* This theme is ubiquitous in algorithms
* MaximumFlow/MinimumCut
* BipartiteMatching/VertexCover
* LinearProgramming
* ZeroSumGames

Midterms

Midterm Grade Distribution

Mean = 67

<35 35-45 45-55 55-65 65-75 75-85 >85

* Letter grades are highly approximate
* Approximate letter grades consider MT1 only

HW Grade Distribution

Mean = 77

<55 60-65 70-75 80-85 90-95
55-60 65-70 75-80 85-90 >95

e Chart does not reflect dropping the lowest HW

