Midterns back after class. Make sore | stop at 11:15 CS4800: Algorithms & Data Jonathan Ullman

Lecture 12:

• Graph Search: BFS Applications, DFS

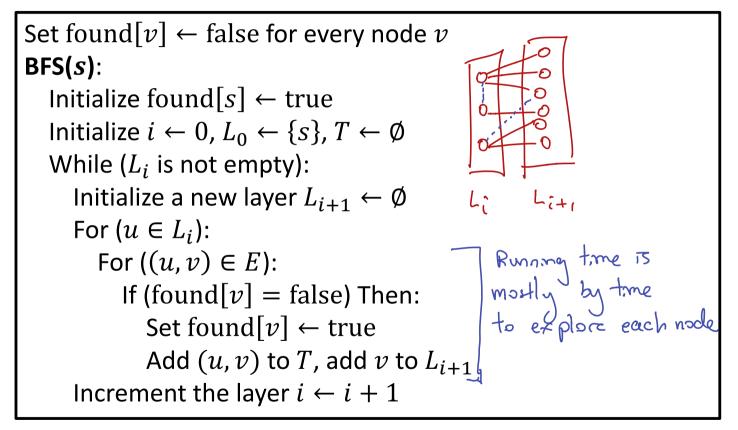
Feb 20, 2018

BFS Review Given a graph G = (V, E) and a "source" sEV

- BFS Algorithm:
 - Input: source node s
 - $L_0 = \{s\}$
 - $L_1 =$ all neighbors of L_0
 - $L_2 =$ all neighbors of L_1 that are not in L_0 , L_1
 - ...
 - L_d = all neighbors of L_{d-1} that are not in L_0 , ..., L_{d-1}

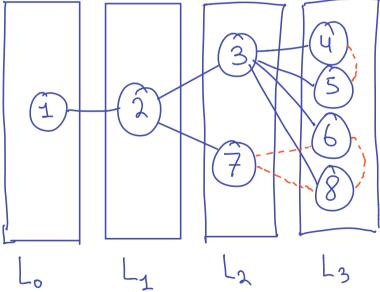
Algorithm makes sense for directed or undirected

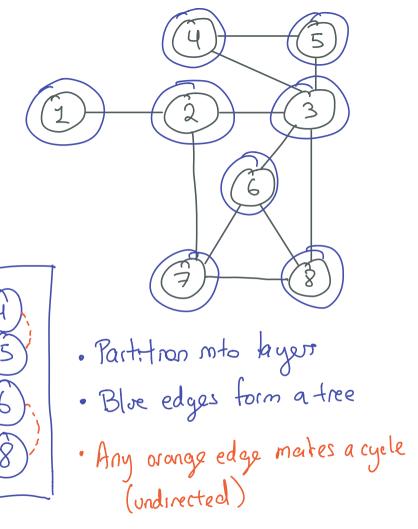
BFS Review time:
$$\sum_{u \in V} O(deg(u) + i) = O(n+m)$$



BFS Review

• BFS this graph from s=1





BFS Review

- Last time we saw that BFS can...
 - ... find the set of nodes that are reachable from *s*
 - ... find the distances from s to all other nodes t
 - ... find shortest paths from s to all other nodes t
 - ... find a cycle in an undirected graph
 - ... identify connected components in undirected graphs
- Today:
 - Using BFS to...
 - ... split the nodes into two "teams" (2-coloring/bipartiteness)
 - ... find strongly connected components in directed graphs
 - Topological Sort / Order
 - DFS (Depth-First Search)

2-Coloring/Bipartiteness

2-Coloring

NO

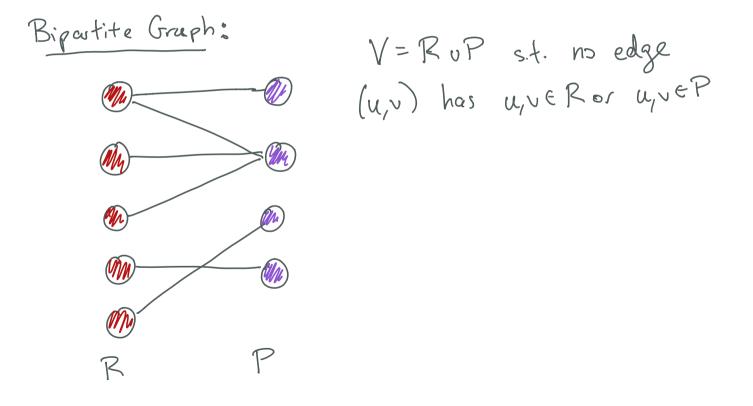
- Problem: Tug-of-War Rematch
 - Need to form two teams *R*, *P*
 - Some students are still mad from last time...
- Input: Undirected graph G = (V, E)
 - $(u, v) \in E$ means u, v can't be on then same team
- Output: Split V into two sets R, P so that no pair in either set is connected by an edge or say not possible

L

ye?

2-Coloring/Bipartiteness

• Alternative Phrasing: Is the graph G bipartite?



Designing the Algorithm

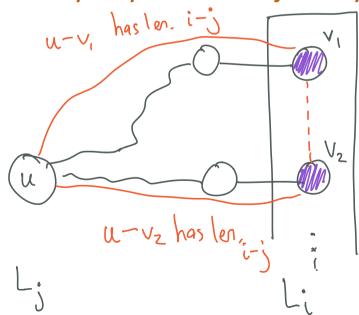
- Optimistic Algorithm: O(n+m) time
 - 1. Pick an arbitrary start node *s*
 - 2. BFS the graph from *s*, coloring nodes as you find them
 - 3. Color nodes in layer *i* purple if *i* even, red if *i* odd
 - 4. See if you found a legal coloring

Correctness?

- If you 2-colored the graph successfully, the graph can be 2-colored successfully
- If you have not 2-colored the graph successfully, maybe you should just try harder?

-j $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

2i-2j+1 odd



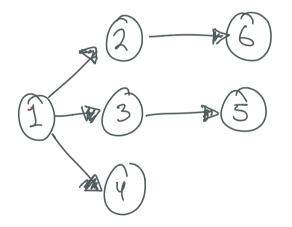
Correctness?

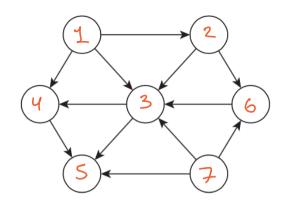
• Key Fact: If G has an odd-length cycle then there is no legal 2-coloring proof-by-proton

BFS in Directed Graphs (Strongly) Connected Components

BFS in Directed Graphs

• BFS works in directed graphs

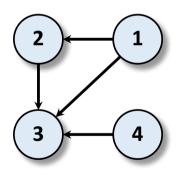




BFS still findsall noder reachable from S and the shortest path

Adjacency Lists for Directed Graphs

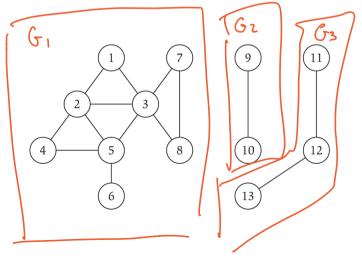
• The adjacency list of a vertex $v \in V$ is the list $A_{out}[v]$ of all edges $(v, u) \in E$ and the list $A_{in}[v]$ of all edges $(u, v) \in E$



$$\begin{array}{l} A_{out}[1] = \{2,3\} & A_{in}[1] = \{\} \\ A_{out}[2] = \{3\} & A_{in}[2] = \{1\} \\ A_{out}[3] = \{\} & A_{in}[3] = \{1,2,4\} \\ A_{out}[4] = \{3\} & A_{in}[4] = \{\} \end{array}$$

Connected Components

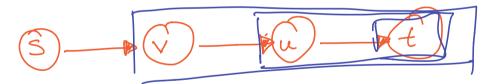
- An undirected graph G is connected if for every pair of nodes $u, v \in V, u$ is reachable from v
- The connected component of s is the set of nodes reachable from $s \quad v \in CC(s)$ then $s \in CC(v)$
- Can partition G into connected components



Strongly Connected Components

- A directed graph G is strongly connected if for every pair $u, v \in V, u, v$ are mutually reachable
- The strongly connected component of *s* is the set of nodes *t* such that *s*, *t* are mutually reachable

SCC(s) = nodes m CC(s) s.t. sECC(t)

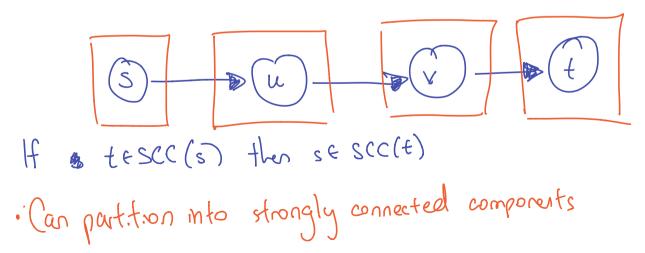


 $cc(s) = \{v, u, t\}$ $cc(v) = \{u, t\}$ $cc(u) = \{t\}$

Strongly Connected Components

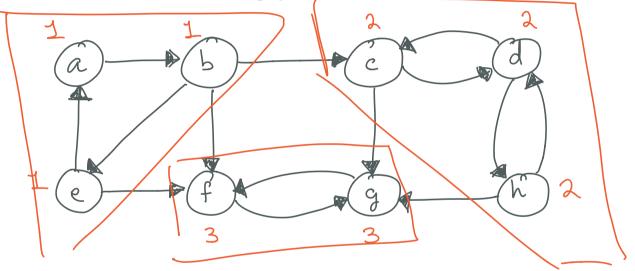
- A directed graph G is strongly connected if for every pair $u, v \in V, u, v$ are mutually reachable
- The strongly connected component of *s* is the set of nodes *t* such that *s*, *t* are mutually reachable

SCC(s) = nodes m CC(s) s.t. sECC(t)



Ask the Audience

• Partition G into strongly connected components



Strongly Connected Components

- Problem: Given *s* find *SCC*(*s*)
- Algorithm:

L: Use BFS to find all nodes reachable from S S (s) $) \leftarrow (\hat{u})$ 2: Let G^{back} be a path from u to s a graph u/ the same nodes and $(u, v) \in E \iff (v, u) \in E^{back}$ Yw) ⇒ a vay to go from s to a folloume edges "beckvards" 3: Use BFS to find all nodes reachable from s m Gback 4: Output the set of nodes v reachable in both.

Connected Components Recap

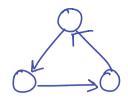
- Partition an undirected graph into connected components in O(n + m) time
- Test if a directed graph is strongly connected in O(n+m) time
 - Find the strong component of s in O(n + m) time • Can partition in O(n + m) with more cleverness] • Partition into SCCs m O(n(n+m)) time
- Upshot: we tend to assume graphs are connected

Topological Sort

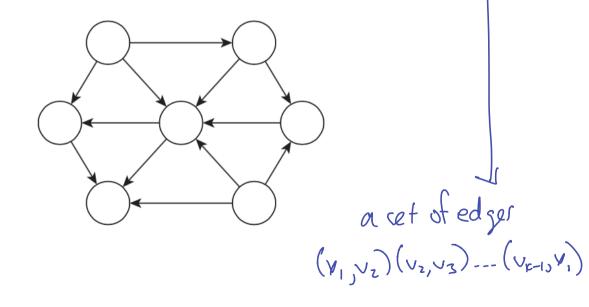
Acyclic Graphs

- Acyclic Graph: An undirected graph with no cycles.
- Can test if a graph has a cycle in O(n + m) time
- An acyclic undirected graph is called a forest

Directed Acyclic Graphs (DAGs)

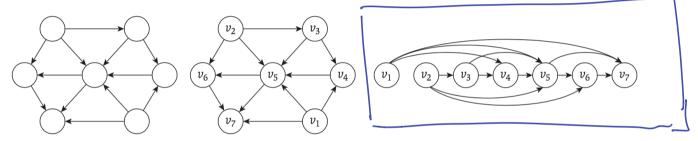


- DAG: A directed graph with no directed cycles
- Can be much more complex than a forest

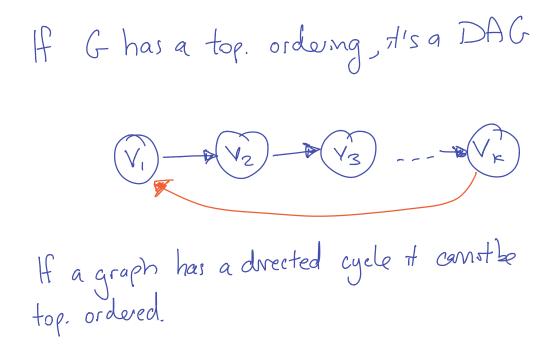


Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships



- A topological ordering of a directed graph is a labeling of the nodes from $v_1, ..., v_n$ so that all edges go "forwards" $(v_i, v_j) \in E \Rightarrow j > i$
 - G has a topological ordering \Rightarrow G is a DAG

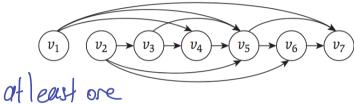


Directed Acyclic Graphs (DAGs)

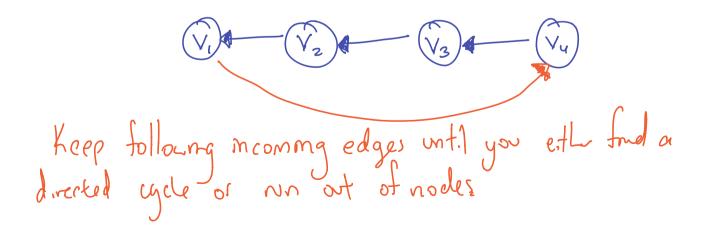
- Problem 1: given a digraph *G*, is it a DAG?
- Problem 2: given a digraph *G*, can it be topologically ordered?
- Theorem: G has a top. ordering \Leftrightarrow G is a DAG
- We will design one algorithm that either outputs a topological ordering or finds a directed cycle

Topological Ordering

Simple Observation: the first node must have no incoming edges



• In any DAG, there is⁴ a node with no incoming edges

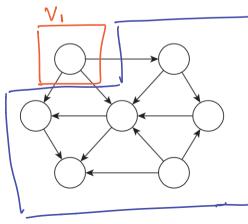


Topological Ordering

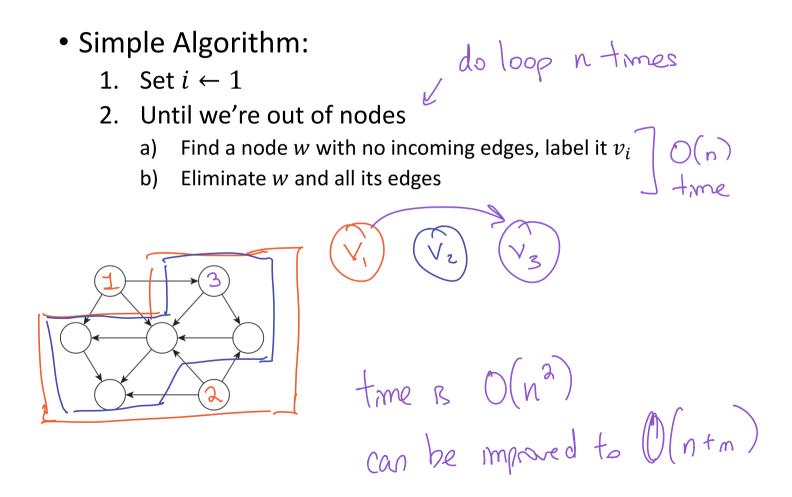
• In any DAG, there is a node with no incoming edges

> top. order of G- {v, {}}

- Theorem: Every DAG has a topological ordering
- Proof by Induction: (by induction on n
 - Base Case (n=1): Trivial
 - Inductive Step:



Implementing Topological Ordering



Fast Topological Ordering

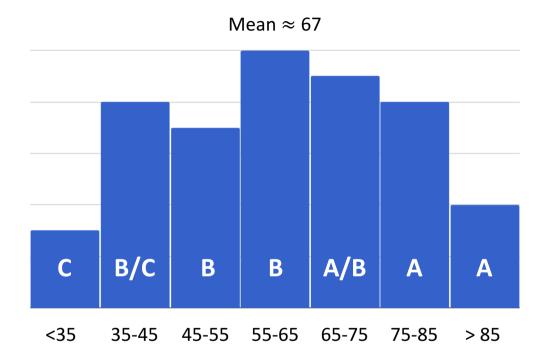
- 1. Set all nodes to active
- 2. Label nodes with # of incoming edges from active nodes
- 3. Let *S* be a set of active nodes with label 0
- 4. Find a node *w* with label 0 and add it to *S*
- 5. Set $i \leftarrow 1$
- 6. Until we're out of nodes
 - a) Choose a node in $w \in S$ call it v_i
 - b) For every edge (w, u), decrease u's label, if u's label drops to 0 then add it to the set S
 - c) Increment $i \leftarrow i + 1$

Allow me to geek out for a minute

- We saw the first example of two amazing themes:
 - Using algorithms to prove mathematical facts
 - G is bipartite \Leftrightarrow G contains no odd cycles
 - "Duality"
 - An odd cycle is an obvious obstruction to 2-coloring
 - Odd cycles are the only obstructions to 2-coloring
- This theme is ubiquitous in algorithms
 - MaximumFlow/MinimumCut
 - BipartiteMatching/VertexCover
 - LinearProgramming
 - ZeroSumGames

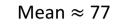
Midterms

Midterm Grade Distribution



- Letter grades are highly approximate
- Approximate letter grades consider MT1 only

HW Grade Distribution



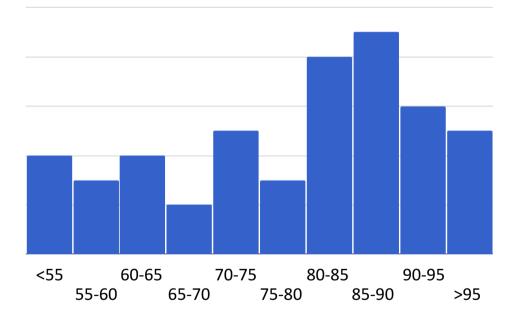


Chart does not reflect dropping the lowest HW