HU5 will be posted after class.

CS4800: Algorithms \& Data Jonathan Ullman

Midterm will be back on tuesday.
Lecture 11:

- Graphs
- Graph Traversals: BFS

Feb 16, 2018

What's Next

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

What's Next

- Graph Algorithms:
- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
- Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
- Dijkstra
- Minimum Spanning Trees:
- Borůvka, Prim, Kruskal

Heaps - Network Flow:

- Algorithms
- Unlimited Applications \longleftarrow Reductions

Graphs

Graphs: Key Definitions

$$
\begin{aligned}
& |V|=n \quad \text { nodes } \\
& |E|=m \quad \# \text { edges }
\end{aligned}
$$

- Definition: A directed graph $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges $u \rightarrow v$
- An edge is an ordered $e=(u, v)$ "from u to v "]
- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and $v "]$ undivented
- Simple Graph:
- No duplicate edges
- No self-loops $e=(u, u)$

Ask the Audience

- How many edges can there be in a simple directed/undirected graph?

Graphs Are Everywhere
nodes $=$ places

- Transportation networks
edges $=$ roads
- Communication networks
- WWW
- Biological networks $\longrightarrow \begin{aligned} & \text { nodes }=\text { species } \\ & \text { edges }=\text { evolutionary ancestors }\end{aligned}$
- Citation networks
- Social networks
- ...
nodes $=$ people
edges $=$ friendships

Paths/Connectivity

for both directed and undivected

- A path is a sequence of consecutive edges in E
- $\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)$
- The length of the path is the \# of edges $u-w_{1}-w_{2} \cdots-w_{k-1}-v$ one edge $=$
poth of length $工$
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)$
- The length of the path is the \# of edges
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ where $k \geq 2$ and v_{1}, \ldots, v_{k} are distinct

$$
3-7-8-3
$$

Ask the Audience
u) n nodes

- Suppose an undirected graph \mathcal{G} is connected
- True/False? G has $\geq n-1$ edges

$$
\Omega(n)=m=O\left(n^{2}\right)
$$

Ask the Audience

- Suppose an undirected graph G has $=n-1$ edges
- True/False? G is connected

$$
\begin{aligned}
& n=4 \\
& m=3=n-1
\end{aligned}
$$

Trees

- An undirected graph G is a tree if:
- G is connected
- G contains no cycles
- Theorem: any two of the following implies the third
- G is connected
- G contains no cycles
- G has $=n-1$ edges

Trees

- Rooted tree: choose a root node r and orient edges away from r
- Models hierarchical structure
- Rooted tree: choose a root node r and orient edges away from r
- Models hierarchical structure

Phylogenetic Tree of Life

Parse Trees

```
if (A[x]==2) then
    (322 + (a*64 +12)/8)
else
    fibonacci(n)
```


Exploring a Graph

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Breadth-First Search: explore all nearby nodes before moving on to further away nodes
- Depth-First Search: follow a path until you get stuck

Exploring a Graph

- BFS/DFS are a General Template for Graph Algs
- Extensions of Breadth-First Search:
- 2-Coloring (Bipartiteness)
- Shortest Paths
- Minimum Spanning Tree (Prim's Algorithm)
- Extensions of Depth-First Search:
- Finding Cycles
- Topological Sorting
- Strongly Connected Components

Breadth-First Search (BFS)

v is a neighbor of u if $(u, v) \in E$

- Informal Description: start at s, find all neighbors of s, find all neighbors of neighbors of s, \ldots
- BFS Algorithm:
- $L_{0}=\{s\}$

- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in L_{0}, L_{1}
- $L_{d}=$ all neighbors of L_{d-1} that are not in L_{0}, \ldots, L_{d-1}
- Stop when L_{d+1} is empty.

Ask the Audience

- BFS this graph from $s=1$

Ask the Audience

- BFS this graph from $s=1$
 layers

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Theorem: BFS reveals the distance from s to all other nodes!
- Nodes in layer L_{i} have distance exactly i from s
- Nodes not in any layer are not reachable from s

Theorem: All nodes in layer i have distance exactly i from s.

- Everything in
la ye o has lays O has d. ot O
- Everything in layer 1 has dit I

Every node in layer 2 has distance ≤ 2.
Every node in layer 2 has distance $\geqslant 2$

$$
\Rightarrow \text { distance }=2
$$

Implementing Graph Search

GenericSearch(s):
$R=\{s\}$
While there is an edge (u, v) where $u \in R, v \notin R$ Add v to R

- To implement we need to decide:
- How to represent the graph as input?
- How to track the vertices that are already explored?
- How to choose the next edge to explore?

Adjacency-Matrix Representation

- The adjacency matrix of a graph $G=(V, E)$ with n nodes is the matrix $A[1: n, 1: n]$ where

$$
A[i, j]= \begin{cases}1 & (i, j) \in E \\ 0 & (i, j) \notin E\end{cases}
$$

Cost Space: $\Theta\left(V^{2}\right) \Theta\left(n^{2}\right)$

Lookup: Θ (1) time List Neighbors: $\Theta(V)$ time

| A | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 |

Adjacency-List Representation

- The adjacency list of a vertex $v \in V$ is the list $A[v]$ of all the neighbors of v

Costs:
Total size of all Imbed lists $\theta(m+n)$

$$
A[1]=\{2,3\}
$$

$$
A[2]=\{3\}
$$

$$
A[3]=\{ \}
$$

List neighbors of $v O(\operatorname{deg}(v))$

$$
A[4]=\{3\}
$$

Lookup $O(\operatorname{deg}(v))$
\#ofreighbor of y

Total Ronning $\left.T_{\text {re }}=O_{n+m}\right)$ BFS Implementation

Initialize found $[v] \leftarrow$ false $\forall v \in V$ BFS(s):
Initialize found $[s] \leftarrow$ true
Initialize layer $[s] \leftarrow 0, \quad$ layer $[v] \leftarrow \infty \forall v \neq s$
Initialize $i \leftarrow 0, L_{0} \leftarrow\{s\}, T \leftarrow \emptyset$
While (L_{i} is not empty)
Initialize a new layer $L_{i+1} \leftarrow \emptyset \longrightarrow \sum_{u \in V} O(\operatorname{deg}(u))=O(m)$
For ($u \in L_{i}$):

For $((u, v) \in E)$:
If (found $[v]=$ false) then
Set found $[v] \leftarrow$ true, layer $[v] \leftarrow i+1$
Add (u, v) to T, add v to L_{i+1}
Increment the layer $i \leftarrow i+1$

