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What’s Next

The Structure of Romantic and Sexual Relations at "JefTerson High School”
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Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview, Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
pairs unconnected to anyone ¢lse)




What’s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations
* Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
e Shortest Paths:

* Dijkstra
K- Minimum Spanning Trees:

* Borlvka, Prim, Kruskal

Reof> o Network Flow:
* Algorithms
* Unlimited Applications &— 'XLQ&)“{'T"“S



Graphs



Graphs: Key Definitions 1= n *oodes
|El=m "Ledaes
* Definition: A directed graph G = (V, E)
 V/'is the set of nodes/vertices

« £ € VXV isthe set of edges w—V directed
* An edge is an ordered ¢ = (u, v) “from u to v”]

* Definition: An undirected graph ¢ = (V, E) ot ed

* Edges are unordered e = (u, v) “between u and v”

. oo
* Simple Graph:

* No duplicate edges

* No self-loops e = (u,u) @ @




Ask the Audience

* How many edges can there be in a simple
directed/undirected graph?
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Graphs Are Everywhere
r\ocLQS = P\QC@)

j eo\%a) - roads
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* Transportation networks
e Communication networks
s WWW

* Biological networks
e Citation networks

e Social networks _—>
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Paths/Connectivity
Qor both O\FVQC“’GA and un&.\reC‘\’eOQ

* A path is a sequence of consecutive edges in E

¢ (ur Wl); (Wli WZ)' (W2r W3)1 ey (Wk—lr U)
* The length of the path is the # of edges 01¢ ei% -
W— W, —\Jg --- — Wy, —V PoJrln lena—Hf)‘L

* An undirected graph is connected if for every two
vertices u,v € V, thereis a path fromu to v



Paths/Connectivity

* A path is a sequence of consecutive edges in E

¢ (ur Wl): (Wl; WZ)J (W2; W3)1 ) (Wk—lr U)
* The length of the path is the # of edges

* A directed graph is strongly connected if for every
two vertices u, v € V, there are paths from u to v
and fromvtou



Cycles

* Acycleisapathv; —v, — - — v, — v, where
k = 2 and vy, ..., vy, are distinct
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Ask the Audience
u) r\\/\oc9-Q.S

* Suppose an undirected graph/\G is connected
* True/False? G has = n — 1 edges
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Ask the Audience

e Suppose an undirected graph G has = n — 1 edges
* True/False? G is connected
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Trees

* An undirected graph G is a tree if:
* (G is connected
* (7 contains no cycles

* Theorem: any two of the following implies the third
* (7 is connected
* (7 contains no cycles (3)
* G has=n —1 edges



Trees

* Rooted tree: choose a root node r and orient edges
away from r
* Models hierarchical structure

* Rooted tree: choose a root node r and orient edges
away from r

oot
e Models hierarchical structure O



Phylogeny Trees

Phylogenetic Tree of Life

Bacteria Archaea Eucarya

Green
Filamentous Myxomycota

Spirochetes bacteria Entamoebae Animalia

Gram Methanosarcina Fungi

positives| yethanobacterium Halophiles

Proteobacteria Plantae
) Methanococcus
Cyanobacteria

T. celer Ciliates

Planctomyces Thermoproteys
Pyrodicticu Flagellates
Bacteroides
Cytophaga Trichomonads
Microsporidia
Thermotoga

Diplomonads
Aquifex



Parse Trees

if (A[x]==2) then

(322 + (a*64 +12)/8)
else

fibonacci (n)

if-then-else



Exploring a Graph



Exploring a Graph

* Problem: Is there a path from s to t?
* |dea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore all nearby nodes before
moving on to further away nodes

* Depth-First Search: follow a path until you get stuck



Exploring a Graph

* BFS/DFS are a General Template for Graph Algs

e Extensions of Breadth-First Search:

» 2-Coloring (Bipartiteness)

* Shortest Paths

* Minimum Spanning Tree (Prim’s Algorithm)
e Extensions of Depth-First Search:

* Finding Cycles

* Topological Sorting

» Strongly Connected Components



Breadth-First Search (BFS) v anesgarer of o
. W ((A)\D ek

» Informal Description: start at s, find aII\neighbofrqgf
s, find all neighbors of neighbors of s, ...

* BFS Algorithm:
* Lo = {s} L, L
* L = all neighbors of L,
* L, = all neighbors of L, that are notin L, L4

* L; = all neighbors of L;_4 thatarenotin Ly, ..., L 1
e Stop when L, is empty.



Ask the Audience

* BFS this graph froms =1

MAYBE WE CAN ENENTUALLY MAKE
LANGUAGE A COMPLETE (MPEDIMENT
TO UNDERSTANDING.
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Ask the Audience

* BFS this graph froms =1
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Breadth-First Search (BFS)

e Definition: the distance between s, t is the number
of edges on the shortest path from sto ¢

 Theorem: BFS reveals the distance from s to all
other nodes!
* Nodes in layer L; have distance exactly i from s
* Nodes not in any layer are not reachable from s
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Implementing Graph Search

GenericSearch(s):
R = {s}
While there is an edge (1, v) whereu € R, v € R
Add vto R

* To implement we need to decide:
* How to represent the graph as input?
* How to track the vertices that are already explored?
* How to choose the next edge to explore?




Adjacency-Matrix Representation

* The adjacency matrix of a graph G = (V,E) withn
nodes is the matrix A[1: n, 1:n] where

Al 7] = 1 (i,))€E nllgllll
;] — O (l,]) $ E 0 1 0
2 1 0
Cost oo 0o o
Space: (V) ©(nw™) o o 1 o0

Lookup: ©(1) time G e
List Neighbors: @(V) time ’



Adjacency-List Representation

* The adjacency list of a vertex v € V is the list A[v]
of all the neighbors of v one Inled [} porpus,
7
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Tckq\ Konr\.\, T\.{ ‘/CX(\"’N\\
BFS Implementation

Initialize found[v] < falseVv € V
BFS(s):
Initialize found|[s] < true O
Initialize layer[s] « 0, layer[v] « oV v #s
Initialize i « 0, Ly « {s}, T « @ j
While (L; is not empty)
Initialize a new layer L; 1 «
For (u € L;):
~ For ((u,v) € E):
| If (found[v] = false) then
Q\V‘% Set found[v] « true, layer[v] « i + 1:3 0l
Add (u,v)toT,addvtoL;;q
Increment the layeri « i + 1

2. 0(dag (M =0l
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