
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	11:	
• Graphs
• Graph	Traversals:	BFS

Feb	16,	2018

What’s	Next

What’s	Next

• Graph	Algorithms:
• Graphs: Key	Definitions,	Properties,	Representations
• Exploring	Graphs: Breadth/Depth	First	Search

• Applications:	Connectivity,	Bipartiteness,	Topological	Sorting
• Shortest	Paths:

• Dijkstra
• Minimum	Spanning	Trees:

• Borůvka,	Prim,	Kruskal
• Network	Flow:

• Algorithms
• Unlimited	Applications

Graphs

Graphs:	Key	Definitions

• Definition:	A	directed	graph ! = #, %
• # is	the	set	of	nodes/vertices
• % ⊆ #×# is	the	set	of	edges
• An	edge	is	an	ordered	(=), * “from) to	*”

• Definition:	An	undirected	graph ! = #, %
• Edges	are	unordered	(=), * “between) and	*”

• Simple	Graph:
• No	duplicate	edges
• No	self-loops	(=),)

Ask	the	Audience

• How	many	edges	can	there	be	in	a	simple	
directed/undirected graph?

Graphs	Are	Everywhere

• Transportation	networks
• Communication	networks
• WWW
• Biological	networks
• Citation	networks
• Social	networks
• …

Paths/Connectivity

• A	path is	a	sequence	of	consecutive	edges	in	%
•),+, , +,, +- , +-, +. , … , +01,, *
• The	length	of	the	path	is	the	#	of	edges

• An	undirected graph	is	connected if	for	every	two	
vertices), * ∈ #,	there	is	a	path	from) to	*

Paths/Connectivity

• A	path is	a	sequence	of	consecutive	edges	in	%
•),+, , +,, +- , +-, +. , … , +01,, *
• The	length	of	the	path	is	the	#	of	edges

• A	directed graph	is	strongly	connected if	for	every	
two	vertices), * ∈ #,	there	are	paths	from) to	*
and	from	* to)

Cycles

• A	cycle is	a	path	*, − *- −⋯− *0 − *, where		
5 ≥ 2 and	*,, … , *0 are	distinct

Ask	the	Audience

• Suppose	an	undirected	graph	! is	connected
• True/False?		! has	≥ 8 − 1 edges

Ask	the	Audience

• Suppose	an	undirected	graph	! has	= 8 − 1 edges
• True/False?		! is	connected

Trees

• An	undirected	graph	! is	a	tree if:
• ! is	connected
• ! contains	no	cycles

• Theorem: any	two	of	the	following	implies	the	third
• ! is	connected
• ! contains	no	cycles
• ! has	= 8 − 1 edges

Trees

• Rooted	tree:	choose	a	root	node	: and	orient	edges	
away	from	:
• Models	hierarchical	structure

Phylogeny	Trees

Parse	Trees

if (A[x]==2) then
(322 + (a*64 +12)/8)

else
fibonacci(n)

if-then-else

==

array	ref 2

A x

power

32 2

+

/

+

12*

a 64

8

fn-call

fibonacci n

Exploring	a	Graph

Exploring	a	Graph

• Problem:	Is	there	a	path	from	; to	<?
• Idea: Explore	all	nodes	reachable	from	;.

• Two	different	search	techniques:
• Breadth-First	Search: explore	all	nearby	nodes	before	
moving	on	to	further	away	nodes

• Depth-First	Search: follow	a	path	until	you	get	stuck

Exploring	a	Graph

• BFS/DFS are	a	General	Template	for	Graph	Algs
• Extensions	of	Breadth-First	Search:

• 2-Coloring	(Bipartiteness)
• Shortest	Paths
• Minimum	Spanning	Tree	(Prim’s	Algorithm)

• Extensions	of	Depth-First	Search:
• Finding	Cycles
• Topological	Sorting
• Strongly	Connected	Components

Breadth-First	Search	(BFS)

• Informal	Description: start	at	;,	find	all	neighbors	of	
;,	find	all	neighbors	of	neighbors	of	;,	…

• BFS	Algorithm:
• => = ;
• =, = all	neighbors	of	=>
• =- = all	neighbors	of	=, that	are	not	in	=>, =,
• …
• =? = all	neighbors	of	=?1, that	are	not	in	=>, … , =?1,
• Stop	when	=?@, is	empty.

Ask	the	Audience

• BFS	this	graph	from	; = 1

Ask	the	Audience

• BFS	this	graph	from	; = 1

Breadth-First	Search	(BFS)

• Definition:	the	distance between	;, < is	the	number	
of	edges	on	the	shortest	path	from	; to	<
• Theorem:	BFS	reveals	the	distance	from	; to	all	
other	nodes!
• Nodes	in	layer	=A have	distance	exactly	B from	;
• Nodes	not	in	any	layer	are	not	reachable	from	;

Implementing	Graph	Search

• To	implement	we	need	to	decide:
• How	to	represent	the	graph	as	input?
• How	to	track	the	vertices	that	are	already	explored?
• How	to	choose	the	next	edge	to	explore?

GenericSearch(;):
C = ;
While	there	is	an	edge), * where) ∈ C,	* ∉ C

Add	* to	C

Adjacency-Matrix	Representation

• The	adjacency	matrix of	a	graph	! = #, % with	8
nodes	is	the	matrix	E 1: 8	, 1: 8 where

E B, H = 	 I1					 B, H ∈ %
	0					 B, H ∉ %

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Cost
Space:	Θ #-

Lookup:	Θ 1 time
List	Neighbors:	Θ # time

2 1

3 4

Adjacency-List	Representation

• The	adjacency	list of	a	vertex	* ∈ # is	the	list	E[*]
of	all	the	neighbors	of	*

2 1

3 4

• E 1 = 2,3
• E 2 = 3
• E 3 = 	
• E 4 = 3

BFS	Implementation

Initialize	found * ← false ∀	* ∈ #
BFS(;):
Initialize	found ; ← true
Initialize	layer ; ← 0,				layer * ← ∞ ∀	* ≠ ;
Initialize	B ← 0,	=> ← ; ,	` ← ∅
While	(=A is	not	empty)
Initialize	a	new	layer	=A@, ← ∅
For	() ∈ =A):
For	(), * ∈ %):
If	(found * = false)	then
Set	found * ← true,	layer * ← B + 1
Add	(), *) to	`,	add	* to	=A@,

Increment	the	layer	B ← B + 1

