
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	10:	
• Dynamic	Programming	Wrap-up
• Midterm	Review	

Feb	9,	2018

Midterm	I	Review

Topics:	Induction

• Proof	by	Induction:
• Mathematical	formulae,	e.g.	∑ "#

$%& = # #(&
)

• Spot	the	bug
• Solutions	to	recurrences
• Correctness	of	divide-and-conquer	algorithms

• Good	way	to	study:
• Lehman-Leighton-Meyer,	Mathematics	for	CS
• Review	D&C	algorithms	in	Kleinberg-Tardos
• HW2.3

L1.4

Question:	Consider	the	recurrence	* + = * #
, + * .#

, + 2+	
Use	the	substitution	method	to	show	that	* + =W(+ log +)

Solution:	We	will	prove	* + ≥ 7+ log + for	some	c.	We	first	prove	
the	induction	step.

* + = * +
4 + * 3+

4 + 2+ ≥ 7+
4 log

+
4 +

37+
4 log 3+

4 + 2+
After	some	math	(omitted),	we	get	that	* + ≥ 7+ log + is	true	
whenever	7 ≤)

); <
= >?@ .

.	In	particular,	we	can	set	c=1

Example	Question:	Induction

Topics:	Asymptotics

• Asymptotic	Notation
• A, C, D, Ω, Θ
• Relationships	between	common	function	types

• Good	way	to	study:
• Kleinberg-Tardos Chapter	2

Notation … means … Think… E.g.

f(n)=O(n) ∃7 > 0, +J > 0, ∀+ ≥ +J:
0 ≤ M + ≤ 7N(+)

Upper bound
“≤”

100n2 = O(n3)

f(n)=W(g(n)) ∃7 > 0, +J > 0, ∀+ ≥ +J:
0 ≤ 7N + ≤ M(+)

Lower bound
“≥”

2n = W(n100)

f(n)=Q(g(n)) M + ∈ C N + 	and
M + ∈ Ω(N +)

Tight bound
“=”

log(n!) = Q(n log n)

f(n)=o(g(n)) ∀7 > 0, ∃+J > 0, ∀+ ≥ +J:
0 ≤ M + < 7N(+)

“<” n2 = o(2n)

f(n)=w(g(n)) ∀7 > 0, ∃+J > 0, ∀+ ≥ +J:
0 ≤ 7N + < M(+)

“>” n2 = w(log n)

Topics:	Asymptotics

Topics:	Asymptotics

2/8/18

• Polynomials. a0 +	a1n	+	…	+	adnd is	Q(nd)	if	ad >	0.	

• Logarithms. log a	n	=	Q(log b	n)	for	all	constants	a,b >	0.

For	every	x	>	0,		log	n	=	O(nx).
• Exponentials. For	all r >1	and	all	d >	0,		nd =	O(rn).

• Factorial.
log(+)! = Θ(+ log +)

factorial grows faster than every exponential

can avoid specifying the base
log grows slower than every polynomial

Every exponential grows faster than every polynomial

8

Topics:	Asymptotics

Question:	Give	a	value	of	n0 which	proves	the	above	statement.

Solution:	Recall	definition

Apply	definition:	0 ≤ 2+) < 7+.
Solve	for	+:	+ >)

R
Let	+J =)

R + 1 L1.9

2n2 =	o(n3)

o(g(n)) =	{	f(n)	: for	any	constant	c >	0,	
there	is	a	constant	n0 >	0
such	that	0	£ f(n)	< cg(n)
for	all	n ³ n0 }

Example	Question:	Asymptotics

L1.10

True	or	False?
1) n2 – 5n	– 100	=	O(n)
2) n3 +	10n2 +	125	=	w(n)
3) n2 +	O(n)	=	O(n2)
4) 2n+1 =	O(2n)
5) 25n =	O(2n)
6) log(n2)	=	O(log(n))

Example	Question:	Asymptotics

Topics:	Recurrences

• Recurrences
• Representing	running	time	by	a	recurrence
• Solving	common	recurrences
• Master	Theorem

• Good	way	to	study:
• Erickson	book
• Kleinberg-Tardos D&C	Chapter	

L1.12

Consider	the	recurrence	T(n)	=	5T(n/3)	+	n	
a) Draw	the	recursion	tree	(at	least	two	levels)
b) What	is	the	depth	of	the	tree?
c) What	is	the	amount	of	work	done	at	level	i?
d) What	is	the	total	amount	of	work	done?

TU$ = U#(& − 1
U − 1 = 1 − U#(&

1 − U

#

$%J

Know	your	geometric	series

Example	Question:	Recurrences

Topics:	Divide-and-Conquer

• Divide-and-Conquer
• Writing	pseudocode
• Proving	correctness	by	induction
• Analyzing	running	time	via	recurrences

• Good	way	to	study:
• Example	problems	from	Kleinberg-Tardos or	Erickson
• HW	2.2,	2.3,	3.1
• Practice,	practice,	practice!

Topics:	Dynamic	Programming

• Dynamic	Programming
• Identify	sub-problems
• Write	a	recurrence,	CW* + = max [# + CW* + − 6 , CW*(+ − 1)
• Fill	the	dynamic	programming	table
• Find	the	optimal	solution
• Analyze	running	time

• Good	way	to	study:
• Example	problems	from	Kleinberg-Tardos or	Erickson
• HW	4.1,	4.2	(solutions	posted	Saturday	morning)
• Practice,	practice,	practice!

