CS4800: Algorithms \& Data Jonathan Ullman

Lecture 10:

- Dynamic Programming Wrap-up
- Midterm Review

Feb 9, 2018

Notes for Hackerrank Problems

- More publ test cases
- List of common issues

Midterm I Review

Edit Distance / Optimal Alignment
x : peas
y : east

p	e	a	s	-
-	e	a	s	t

$\operatorname{OPT}(n, m)$
$\operatorname{OPT}(i, j)$ is the cost of aligning

$$
x_{1} \ldots x_{i} \omega / y_{1} \ldots y_{j}
$$

- Each alignment is $n+m$ letters

$$
n=m
$$

$$
n \cdot n \cdot(2 n)=2 n^{3}
$$

Analyzing Runtime of DP Algs

- (Optional: Sorting the input) $O(n \log n$)
- You can use Mergesort w/ proof
- Feel free to "relabel" inputs into sorted order
- Filling the dynamic programming table

- Backtrack through the table to find the solution - Usually is dominated by the time to fill the table.

Running Time Analysis of Memorization
(Top-Doun)

- Let M be a table of solutions to subproblens
- Initialize M to "empty"
$A \lg (i):$
(f $M[i]$ not empty: return $M[i]$
Else: sk calls [depends on problem] $M[i] \longleftarrow[$ something recursive $]$ return Mi]

Every time we fill one entry of MCi] we mate $\leq k$ recursive calls. Total ${ }^{\circ}$ of calls $\leq k$ (${ }^{t}$ of entree of M)

$$
\text { Running time: }(\# f \text { calls })+\left(\begin{array}{l}
\left.\#_{\text {of entree of }} M\right) \cdot\left(\begin{array}{l}
\text { time to } \\
f_{1} l \text { ore } \\
\text { entry }
\end{array}\right)
\end{array}\right)
$$

Topics: Induction

- Proof by Induction:
- Mathematical formulae, e.g. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Spot the bug
- Solutions to recurrences
- Correctness of divide-and-conquer algorithms
- Good way to study:
- Lehman-Leighton-Meyer, Mathematics for CS
- Review D\&C algorithms in Kleinberg-Tardos
- HW2.3

Example Question: Induction

Question: Consider the recurrence $T(n)=T\left(\frac{n}{4}\right)+T\left(\frac{3 n}{4}\right)+2 n$

Solution: We will prove $T(n) \geq c n \log n$ for some c. We first prove the induction step.

$$
T(n)=T\left(\frac{n}{4}\right)+T\left(\frac{3 n}{4}\right)+2 n \geq \frac{c n}{4} \log \frac{n}{4}+\frac{3 c n}{4} \log \left(\frac{3 n}{4}\right)+2 n
$$

After some math (omitted), we get that $T(n) \geq c n \log n$ is true whenever $c \leq \frac{2}{2-\left(\frac{3}{4}\right) \log 3}$. In particular, we can set $c=1$

Topics: Asymptotics

- Asymptotic Notation
- $o, O, \omega, \Omega, \Theta$
- Relationships between common function types
- Good way to study:
- Kleinberg-Tardos Chapter 2

Topics: Asymptotics

Notation	... means ...	Think...	E.g.
$f(n)=O(n)$	$\begin{gathered} \exists c>0, n_{0}>0, \forall n \geq n_{0}: \\ 0 \leq f(n) \leq c g(n) \end{gathered}$	Upper bound " $\leq "$	$100 n^{2}=\mathrm{O}\left(n^{3}\right)$
$f(n)=\Omega(g(n))$	$\begin{gathered} \exists c>0, n_{0}>0, \forall n \geq n_{0}: \\ 0 \leq c g(n) \leq f(n) \end{gathered}$	Lower bound " \geq "	$2^{n}=\Omega\left(n^{100}\right)$
$f(n)=\Theta(g(n))$	$\begin{aligned} & f(n) \in O(g(n)) \text { and } \\ & f(n) \in \Omega(g(n)) \end{aligned}$	Tight bound " $=$ "	$\log (n!)=\Theta(n \log n)$
$f(n)=o(g(n))$	$\begin{gathered} \forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: \\ 0 \leq f(n)<c g(n) \end{gathered}$	"<"	$n^{2}=\mathrm{o}\left(2^{n}\right)$
$f(n)=\omega(g(n))$	$\begin{aligned} & \forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: \\ & 0 \leq c g(n)<f(n) \end{aligned}$	">"	$n^{2}=\omega(\log n)$

Topics: Asymptotics

For all real $a>0, m$, and n, we have the following identities:

$$
\begin{aligned}
a^{0} & =1, \\
a^{1} & =a, \\
a^{-1} & =1 / a, \\
\left(a^{m}\right)^{n} & =a^{m n}, \\
\left(a^{m}\right)^{n} & =\left(a^{n}\right)^{m}, \\
a^{m} a^{n} & =a^{m+n} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { For all real } a>\overline{0}, b>0, c>0, \text { and } n, \\
& a=b^{\log _{b} a}, \\
& \log _{c}(a b)=\log _{c} a+\log _{c} b, \\
& \log _{b} a^{n}=n \log _{b} a, \\
& \log _{b} a=\frac{\log _{c} a}{\log _{c} b}, \\
& \log _{b}(1 / a)=-\log _{b} a, \\
& \log _{b} a=\frac{1}{\log _{a} b}, \\
& a^{\log _{b} c}=c^{\log _{b} a},
\end{aligned}
$$

where, in each equation above, logarithm bases are not 1 .

Topics: Asymptotics

- Polynomials. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$.

- Logarithms. $\log _{a} n_{1}=\Theta\left(\log _{b} n\right)$ for all constants $a, b>0$. can avoid specifying the base log grows slower than every polynomial

For every $x>0, \log n=0\left(n^{x}\right)$.

- Exponentials. For all $r>1$ and all $d>0, n^{d}=O\left(r^{n}\right)$.

Every exponential grows faster than every polynomial

- Factorial.

$$
\begin{aligned}
& \log (n!) \\
& \log (n)!=\Theta(n \log n)
\end{aligned}
$$

factorial grows faster than every exponential

Example Question: Asymptotics

$$
2 n^{2}=o\left(n^{3}\right)
$$

Question: Give a value of n_{0} which proves the above statement.

Solution: Recall definition

$$
o(g(n))=\{f(n):
$$

for any constant $c>0$, there is a constant $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $\left.n \geq n_{0}\right\}$

Apply definition: $0 \leq 2 n^{2}<c n^{3}$
Solve for n : $n>\frac{2}{c}$
$\forall c$ if
$n \geqslant \frac{2}{c}+1$, then $2 n^{2}<c \cdot n^{3}$

Example Question: Asymptotics

True or False?

1) $n^{2}-5 n-100=O(n)$
2) $n^{3}+10 n^{2}+125=\omega(n)$
3) $\mathrm{n}^{2}+\mathrm{O}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
4) $2^{n+1}=O\left(2^{n}\right)$
5) $2^{5 n}=O\left(2^{n}\right)$
6) $\log \left(n^{2}\right)=O(\log (n))$

Topics: Recurrences

- Recurrences eeg. My alg mates 2 recurve callion
- Representing running time by a recurrence size and does
- Solving common recurrences
- Master Theorem

$$
T(n)=2 T\left(\frac{n}{3}\right)+n^{2}
$$

- Good way to study:
- Erickson book
- Kleinberg-Tardos D\&C Chapter
- Master Theorem

- Recusnen Tree

Example Question: Recurrences

Consider the recurrence $T(n)=5 T(n / 3)+n$
a) Draw the recursion tree (at least two levels)
b) What is the depth of the tree?
c) What is the amount of work done at level i?
d) What is the total amount of work done?

Know your geometric series

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}=\frac{1-x^{n+1}}{1-x}
$$

Topics: Divide-and-Conquer

- Divide-and-Conquer
- Writing pseudocode
- Proving correctness by induction
- Analyzing running time via recurrences
- Good way to study:
- Example problems from Kleinberg-Tardos or Erickson
- HW 2.2, 2.3, 3.1
- Practice, practice, practice!

Good Review Problems for $D+C$:
(1) There are n items. In $O(1)$ time you check if item i equals item j. Suppose $>\frac{n}{2}$ of the items are the same. Design an $O(n \log n)$ $D+C$ algorithm to ind one such item.

- O(nlogn) algorithm to deride if $>\frac{n}{2}$ items we the sane.
(2) n items, each item is either good or bad.

There is a function $\operatorname{HELP}(i, j)$ s.t.
$\operatorname{HELP}(i, i)$ returns either $\{$ same, different $\}$

Topics: Dynamic Programming

- Dynamic Programming
- Identify sub-problems
- Write a recurrence, $O P T(n)=\max \left\{v_{n}+O P T(n-6), O P T(n-1)\right\}$
- Fill the dynamic programming table
- Find the optimal solution
- Analyze running time
- Good way to study:
- Example problems from Kleinberg-Tardos or Erickson
- HW 4.1, 4.2 (solutions posted Saturday morning)
- Practice, practice, practice!

