CS4800: Algorithms & Data Jonathan Ullman

Lecture 10:

- Dynamic Programming Wrap-up
- Midterm Review

Feb 9, 2018

Notes for Hackenrank Problems More public test cases · List of common issues

Midterm I Review

Edit Distance / Optimal Alignment
x: peas
$$P = a = s = -$$

y: east $P = a = s = -$
 $P = a = s = t$
 $OPT(n,m)$
 $OPT(i,j) = s = the cost of aligning = x_1...x_i = v/y_1...y_j$
 $N = m$ $N \cdot N \cdot (2n) = 2n^3$

Topics: Induction

- Proof by Induction:
 - Mathematical formulae, e.g. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - Spot the bug
 - Solutions to recurrences
 - Correctness of divide-and-conquer algorithms
- Good way to study:
 - Lehman-Leighton-Meyer, Mathematics for CS
 - Review D&C algorithms in Kleinberg-Tardos
 - HW2.3

Example Question: Induction

Question: Consider the recurrence $T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{3n}{4}\right) + 2n$ Use the substitution method to show that $T(n) = \Omega(n \log n)$

Solution: We will prove $T(n) \ge cn \log n$ for some *c*. We first prove the induction step.

$$T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{3n}{4}\right) + 2n \ge \frac{cn}{4}\log\frac{n}{4} + \frac{3cn}{4}\log\left(\frac{3n}{4}\right) + 2n$$

After some math (omitted), we get that $T(n) \ge cn \log n$ is true whenever $c \le \frac{2}{2-\left(\frac{3}{4}\right)\log 3}$. In particular, we can set c=1

- Asymptotic Notation
 - $o, O, \omega, \Omega, \Theta$
 - Relationships between common function types
- Good way to study:
 - Kleinberg-Tardos Chapter 2

Notation	means	Think	E.g.
f(n)=O(n)	$ \exists c > 0, n_0 > 0, \forall n \ge n_0: \\ 0 \le f(n) \le cg(n) $	Upper bound "≤"	$100n^2 = \mathcal{O}(n^3)$
$f(n)=\Omega(g(n))$	$ \exists c > 0, n_0 > 0, \forall n \ge n_0: \\ 0 \le cg(n) \le f(n) $	Lower bound "≥"	$2^n = \Omega(n^{100})$
$f(n)=\Theta(g(n))$	$f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$	Tight bound "="	$\log(n!) = \Theta(n \log n)$
f(n)=o(g(n))	$ \begin{aligned} \forall c > 0, \exists n_0 > 0, \forall n \geq n_0: \\ 0 \leq f(n) < cg(n) \end{aligned} $	"<"	$n^2 = o(2^n)$
$f(n)=\omega(g(n))$	$ \begin{aligned} \forall c > 0, \exists n_0 > 0, \forall n \ge n_0: \\ 0 \le cg(n) < f(n) \end{aligned} $	···>"	$n^2 = \omega(\log n)$

For all real a > 0, m, and n, we have the following identities:

$$a^{0} = 1,$$

 $a^{1} = a,$
 $a^{-1} = 1/a,$
 $(a^{m})^{n} = a^{mn},$
 $(a^{m})^{n} = (a^{n})^{m},$
 $a^{m}a^{n} = a^{m+n}.$

For all real
$$a > 0$$
, $b > 0$, $c > 0$, and n ,
 $a = b^{\log_b a}$,
 $\log_c(ab) = \log_c a + \log_c b$,
 $\log_b a^n = n \log_b a$,
 $\log_b a = \frac{\log_c a}{\log_c b}$,
 $\log_b (1/a) = -\log_b a$,
 $\log_b a = \frac{1}{\log_a b}$,
 $a^{\log_b c} = c^{\log_b a}$,

where, in each equation above, logarithm bases are not 1.

• Polynomials. $a_0 + a_1 n + \dots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.

• Logarithms. $\log_a n_{\uparrow} = \Theta(\log_b n)$ for all constants a, b > 0.

can avoid specifying the base

log grows slower than every polynomial

For every x > 0, log $n = O(n^x)$.

• **Exponentials.** For all r > 1 and all d > 0, $n^d = O(r^n)$.

Every exponential grows faster than every polynomial

• Factorial.

 $\log(n!) = \Theta(n \log n)$

factorial grows faster than every exponential

Example Question: Asymptotics

$$2n^2 = o(n^3)$$

Question: Give a value of n_0 which proves the above statement.

Solution: Recall definition

$$\approx \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
for any constant $c > 0$

Λ

 $O(g(n)) = \{f(n) :$

for any constant *c* > 0, there is a constant $n_0 > 0$ such that $0 \leq f(n) < cg(n)$ for all $n \ge n_0$ }

Apply definition: $0 \le 2n^2 < cn^3$

Solve for
$$n: n > \frac{2}{c}$$
 for $n: n > \frac{2}{c}$ for $n > \frac{2}{c+1}$ for $2n^2 < c \cdot n^3$
Let $n_0 = \frac{2}{c} + 1$

Example Question: Asymptotics

True or False?

- 1) $n^2 5n 100 = O(n)$
- 2) $n^3 + 10n^2 + 125 = \omega(n)$
- 3) $n^2 + O(n) = O(n^2)$
- 4) $2^{n+1} = O(2^n)$
- 5) $2^{5n} = O(2^n)$
- 6) $\log(n^2) = O(\log(n))$

Topics: Recurrences

- Recurrences
- ecurrences e.g. My alg mater 2 recursive callyon Representing running time by a recurrence $\frac{1}{2}$ work
 - Solving common recurrences
 - Master Theorem
- Good way to study:
 - Erickson book
 - Kleinberg-Tardos D&C Chapter

 $T(n) = 2T(\frac{n}{3}) + n^2$

· Recursion Tree

Example Question: Recurrences

Consider the recurrence T(n) = 5T(n/3) + n

- a) Draw the recursion tree (at least two levels)
- b) What is the depth of the tree?
- c) What is the amount of work done at level *i*?
- d) What is the total amount of work done?

Know your geometric series

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1} = \frac{1 - x^{n+1}}{1 - x}$$

Topics: Divide-and-Conquer

- Divide-and-Conquer
 - Writing pseudocode
 - Proving correctness by induction
 - Analyzing running time via recurrences
- Good way to study:
 - Example problems from Kleinberg-Tardos or Erickson
 - HW 2.2, 2.3, 3.1
 - Practice, practice, practice!

Topics: Dynamic Programming

- Dynamic Programming
 - Identify sub-problems
 - Write a recurrence, $OPT(n) = \max\{v_n + OPT(n-6), OPT(n-1)\}$
 - Fill the dynamic programming table
 - Find the optimal solution
 - Analyze running time
- Good way to study:
 - Example problems from Kleinberg-Tardos or Erickson
 - HW 4.1, 4.2 (solutions posted Saturday morning)
 - Practice, practice, practice!