CS3000: Algorithms & Data
Jonathan Ullman

Lecture 9:

* @Graphs

 Graph Traversals: DFS
 Topological Sort

Feb 5, 2020

What’'s Next

The Structure of Romantic and Sexual Relations at "JefTerson High School”

oo
q \:':.’.-
L P
\\:4 .r ““ :—0 i \(
- Qe » A&
. .‘.‘{ s> F’-"('“ft. t‘k‘*\ ._> A
: <% ¢ /\
?’#"1 o o ?““ -
2Kl ST
¢ oy R
’pob'?‘

\ 63
- { ___‘.-—- —lb ® Male

Female

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview, Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
pairs unconnected to anyone ¢lse)

What’s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

e Dijkstra

e Bellman-Ford (DynamicProgramming)
Minimum Spanning Trees:

e Boruvka, Prim, Kruskal
Network Flow:

* Algorithms
* Reductionsto Network Flow

Graphs

Graphs: Key Definitions

* Definition: A directed graph ¢ = (V, E)
* I/ is the set of nodes/vertices
« € VXV is the set of edges
* An edgeisan orderede = (u, v) “from u to v”

 Definition: An undirected graph ¢ = (V, E)

* Edges are unorderede = (u, v) “between u and v”

ORROENOENC)
 Simple Graph: Q‘Q
* No duplicate edges .'

* No self-loopse = (u, u) (4)

Ask the Audience

* How many edges can there be in a simple
directed/undirected graph?

Graphs Are Everywhere

* Transportation networks
e Communication networks
c WWW

* Biological networks

* Citation networks

e Social networks

Paths/Connectivity

* A path is a sequence of consecutive edges in E
e P = {(u, Wl), (Wl, Wz), (Wz, W3), cee) (Wk_l,v)}
¢ P=u—W1—W2—W3 — = Wig_1—V
* The length of the path is the # of edges

* An undirected graph is connected if for every two
verticesu,v € V, there is a path fromu to v

e A directed graph is strongly connected if for every
two verticesu,v € I/, there are paths fromu to v
and fromvtou

Cycles

* Acycleisa pathv, —v, — - — v, — v, and
vy, ..., Uy are distinct

Ask the Audience

e Suppose an undirected graph G is connected
* True/False? G has at least n — 1 edges

Ask the Audience

e Suppose an undirected graph ¢ has n — 1 edges
* True/False? G isconnected

Trees

* A simple undirected graph G is a tree if:
* (7 is connected
* (G containsno cycles

* Theorem: any two of the following implies the third
* (G is connected

* (G containsno cycles (3)
* G has=n—1edges

Trees

* Rooted tree: choose a root node r and orient edges
away fromr

e Models hierarchical structure

Phylogeny Trees

Phylogenetic Tree of Life

Bacteria Archaea Eucarya

Green
Filamentous Myxomycota
Spirochetes bacteria Entamoebae Animalia

Gr.'a.m Methanosarcina Fungi
positives| pethanobacterium Halophiles

Proteobacteria Plantae
Methanococcus
Cyanobacteria

T. celer Ciliates

Planctomyces Thermoproteys
Pyrodicticu Flagellates
Bacteroides
Cytophaga Trichomonads
Microsporidia
Thermotoga

Diplomonads
Aquifex

Parse Trees

if (A[x]==2) then

(322 + (a*64 +12)/8)
else

fibonacci (n)

Representing a Graph

Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) with n
nodes is the matrix A[1:n, 1: n] where

=-nllll

PR 0

A[L, /] = 1 (L,j) €EE o0 o0 1 o
' 0 (i,j)&E o 0 o o

o

0 1

o

gs—ie; WE Q,Q

Lookup: ©®(1) time

List Neighbors: ©(V) time e °

Adjacency Lists (Undirected)

* The adjacency list of a vertexv € V is the list A[v]
ofallust. (v,u) € E

Al1] = 12,3}
Al2] = 11,3}
A[3] ={1,2,4}
Al4] = 13}

G’G

Adjacency Lists (Directed)

* The adjacency list of a vertex v € IV are the lists
* A, [v]ofallust (v,u) EE
e A [v]ofallust (u,v) EE

Aout 1 — {2»3} Ain 1 — {}

Aoytl2] = {3} A (2] = {1} a,e
Aout 3 — {} Aln 3 — {1;2;4‘}

Apucld] = 3} Apl4] = {})«

Exploring a Graph

Exploring a Graph

* Problem: Is there a path fromsto t?
* ldea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back

Exploring a Graph

* BFS/DFS are general templates for graph algorithms
* Extensions of Breadth-First Search:
e 2-Coloring(Bipartiteness)
e Shortest Paths
* Minimum Spanning Tree (Prim’s Algorithm)
* Extensions of Depth-First Search:
* Topological Sorting

Depth-First Search (DFS)

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 VYu

DFS (u) :
exploredu] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS (v)

Depth-First Search

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u,a), (u, b), (b, c)
* These arethe edges that explore new nodes
* Forward edges: (u, ¢)
* Ancestortodescendant
* Backward edges: (a, u)
e Descendanttoancestor
 Impliesa directed cycle!
* Crossedges: (b, a)

* No ancestral relation

MANRBE WE CAN ENENTUALLN MAKE
: RBNG WERDS) LANGUAGE A COMFLETE MPDIMENT
Ask the Audience ' | -
=3 i

* DFS starting from node a
e Search in alphabetical order

* Label edges with
{tree,forward,backward,cross}

AQ PENQABQ UOSI0N 56

Post-Ordering

G = (V,E) is a graph
explored[u] = 0 VYu

DFS (u) :
exploredu] =1

for ((u,v) in E):

if (explored[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintaina counter clock, initially setclock = 1
* post-visit(u):
set postorder[u]=clock, clock=clock+l

Pre-Ordering

G = (V,E) is a graph
explored[u] = 0 VYu

DFS (u) :
exploredu] =1

pre-visit (u)

for ((u,v) in E):

if (explored[v]=0):

parent[v] = u
DF'S (v)

* Maintaina counter clock, initially setclock = 1

* pre-visit(u):

set preorder[u]=clock,

clock=clock+1

Ask the Audience

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order

Ask the Audience

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order 8 7 5 4 6 1 2

Ask the Audience

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

Post-Order 8 7 5 4 6 1 2 3

Ask the Audience

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

 DFS(u) can’t finish untilits children are finished
e If (u,v)isatree edge, then postorder[u] > postorder[v]

e If (u,v)is a forward edge, then postorder[u] > postorder[v]

* If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

 When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)
* DFS(v) started before DFS(u) but finished after

 Canonlyhappenfora backward edge

Topological Ordering

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest

Directed Acyclic Graphs (DAGS)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

OROJOROROROSOD

e A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all

edges go “forwards”, that is (vi,v]-) EE=>j]>1
* (has a topological ordering= (G is a DAG

Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

 We will design one algorithm that either outputsa
topological ordering or finds a directed cycle

Topological Ordering

* Observation: the first node must have no in-edges
/Q-\/__‘
OJoYGROROFORG

* Observation: In any DAG, there is always a node
with no incoming edges

Topological Ordering

* Fact: In any DAG, there is a node with no incoming
edges

* Thm: Every DAG has a topological ordering
* Proof (Induction):

Fast Topological Ordering

* Claim: ordering nodes by decreasing postorder
gives a topological ordering

* Proof:
* A DAG has no backward edges
* Suppose thisis not a topological ordering

* That means there exists an edge (u,v) such that
postorder[u] < postorder][v]

* We showed that any such (u,v) is a backward edge

* But there are no backward edges, contradiction!

Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes v4, ..., v, so that (vi,vj) EE=j>I

* Can compute a TOin O(n 4+ m) time using DFS
* Reverse of post-order is a topological order

