CS3000: Algorithms & Data
Jonathan Ullman

Lecture 9:

 Graphs

 Graph Traversals: DFS
 Topological Sort

Feb 5, 2020

What’s Next

The Structure of Romantic and Sexual Relations at "JefTerson High School”

2o
q \:':_’.—
LY b & P
.x;i UE 100y, /
. S
- ‘_"Q’ “(.. ‘_'-o" $ ‘J ,3‘.‘.¢'. o \"
' i e Dot — B
Tt A o T /\
T4 soals é-f
2 KLY 4
v Y w‘.,._;".:o >

\ \ 63
o E o— — ® Male

Female

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview., Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
pairs unconnected to anyone ¢lse)

What’'s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

* Dijkstra

* Bellman-Ford (DynamicProgramming)
Minimum Spanning Trees:

* Boruvka, Prim, Kruskal
Network Flow:

* Algorithms
e Reductionsto Network Flow

Graphs

S
Graphs: Key Definitions @) ()

I\

C

* Definition: A directed graph ¢ = (V/, E)
* I/ is the set of nodes/vertices
[€ VXV is the set of edges
* An edgeisan orderede = (u,v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unorderede = (u, v) “between 1 and v”

(O O O
* Simple Graph: @‘G
* No duplicate edges "

* No self-loopse = (u,u) (4)

Wt IV \ HLQ-C noddes

Ask the Audience JE] bl edops

* How many edges can there be in a simple
directed/undirected graph?

f\}vcc’“& O ¢ m ¢ n(a-1)
AV
GeR

\WNW& Dem ¢ n(’:\ - (Q

- O(n*)

Graphs Are Everywhere

* Transportation networks
e Communication networks
c WWW

* Biological networks
 Citation networks

 Social networks

Paths/Connectivity

D= @ —=>®—. —C))

* A path is a sequence of consecutive edges in E
* P = {(u, Wl); (le WZ)) (WZ! WB)') (Wk—li U)}
e P = UuU—W; — Wy —W3 —— Wgp_1— 7V
* The length of the path is the # of edges

* An undirected graph is connected if for every two
verticesu,v € V, there is a path fromu to v

* A directed graph is strongly connected if for every
two vertices u, v € V, there are paths fromu to v
and fromvtou

>()

K@/

Cycles

* Acycleisapathv, —v, — -+ — v, —v; and
Vq, ..., U are distinct

Ask the Audience

e Suppose an undirected graph G is connected
. True/FaIse? G has at least n — 1 edges

TW?;Qa\\S W o%dvme 80(\/13 ore (,onnuiao\,

T =200

Ask the Audience
g[mP\Q_
* Suppose an’Undirected graph G has'n — 1 edges

* True/False? G is connected

(s

- Cd'é,QS 5 nt comected

Trees

* A simple undirected graph G is a tree if:
* G is connected
* (7 containsno cycles

* Theorem: any two of the following implies the third
* (G is connected

* (7 containsno cycles Q
* G has=n—1edges

Trees

* Rooted tree: choose a root node r and orient edges
away fromr

 Models hierarchical structure
0 8 @é O &
(D—)

(8)
)
~7 ()

Phylogeny Trees

Phylogenetic Tree of Life

Bacteria Archaea Eucarya
Green
Filamentous Myxomycota
Spirochetes bacteria Entamoebae Animalia
Gram Methanosarcina Fungi
positives| pethanobacterium Halophiles
Proteobacteria Plantae
. Methanococcus
Cyanobacteria
T. celer Ciliates
Planctomyces Thermoproteys
Pyrodicticu Flagellates
Bacteroides
Cytophaga Trichomonads
Microsporidia
Thermotoga

Diplomonads
Aquifex

Parse Trees

if (A[x]==2) then

(322 + (a*64 +12)/8)
else

fibonacci (n)

Representing a Graph

Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) with n
nodes is the matrix A[1:n, 1:n] where

E“ﬂﬂ“
. ™o 1 1 o
aip= (L GDEE BB o 1
’ 0 (i,j) €E "o o o0 o
o o 1 o0

cost On®)

Space: g47%) a,a

Lookup: ©(1) time

List Neighbors: @) time a °

O (M

Adjacency Lists (Undirected) ‘* @‘*@
D00

* The adjacency list of a vertex v € V is the list A[v]
ofallust (v,u) € E

Al|l] =1{2,3}

Al2] ={1,3}

Al3] =1{1,2,4}
S?ccce . @(n—t mw A:ll-: _ {3}

Lookup % O (| + deﬁ(ﬂ\ a'a
(=)
| oot Ne:cgf,hocs A O(\-('4.07 (L\\ a °

)

'Dan& a node v&\

< _{,L{ e O‘F n e;@\n\os/ﬁ

Adjacency Lists (Directed)

\\guc\n -{-\Aq'ﬁ“
* The adjacency list of{vertexv € I/ are the lists
« A,,:[V] of all u@(v, u) EE
e A [v]ofallust. (u,v) EE

Aout:l: — {213} Ain 1 — {}
Aowel2] = (3} Aml2] = {1} @,ﬁ
Apuel41 = (3} A[4] = {3 ()

Exploring a Graph

Exploring a Graph

* Problem: Is there a path fromsto t?
* Idea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back

Exploring a Graph

* BFS/DFS are general templates for graph algorithms
* Extensions of Breadth-First Search:
* 2-Coloring(Bipartiteness)
e Shortest Paths
* Minimum Spanning Tree (Prim’s Algorithm)
* Extensions of Depth-First Search:
* Topological Sorting

Depth-First Search (DFS)

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
explored[u] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

6‘{‘(\0(‘4-8 (’.Aru-é

’n/‘ﬂ YN\U"f ?OMWS ‘[j.')(l"\S o '{'fze_ (no C-ﬂCUS}

vio Ag "H/\a,(' LS conncected —to

[

(-4

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Vu

DF'S (u) :
explored[u] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

FO(' ever

(mm& Tame)
(r—(

nocke Ve\/)LJ{_ m&k@ oNne Calu - DFS (vw

H:U‘?- call DFES (Vw +LU\ +L€ _l"‘“’\ﬁ to evecote *{‘LQ Call

> O(*<M3®Y\

K8 > O((*(Lﬁ(ff>
" = O(Y\%mv

o lime

Depth-First Search

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u, a), (u,b), (b,C¢) Qarent edges”
* These arethe edges that explore new nodes
* Forward edges: (u, c)
* Ancestortodescendant
» Backward edges: (a, u)
e Descendanttoancestor
* Impliesa directed cycle!
* Crossedges: (b,a)

* No ancestral relation

MANBE WE CAN ENENTUALN MAKE
R VERRING WEIRDS LANGUAGE A COMPLETE (MPEDIMENT
Ask the Audience i

* DFS starting from node a

e Search in alphabetical order
* Label edges with
{tree,forward,backward,cross}

Post-Ordering
Owe©

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) : a a

explored[u] =1

for ((u,v) in E):

if (explored[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintaina counter clock, initially setclock = 1
* post-visit (u):
set postorder[u]=clock, clock=clock+l

Pre-Ordering

G = (V,E) is a graph

explored[u] = 0 Vu
DFS (u) : a a

explored[u] =1
pre-visit (u)

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

* Maintaina counter clock, initially setclock = 1
°* pre-visit(u):
set preorder[u]=clock, clock=clock+1l

Ask the Audience

 Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order

Ask the Audience

 Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order 8 7 5 4 6 1 2

Ask the Audience

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

Vertex a b c d e f g h

Ask the Audience

e Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

* DFS(u) can’t finish untilits children are finished
e If (u,v)is atree edge, then postorder[u] >postorder[v]

e If (u,v)is aforwardedge, then postorder[u] > postorder|[v]

* If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

* When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)
* DFS(v) started before DFS(u) but finished after

* Canonlyhappen fora backward edge

Topological Ordering

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

ONOJOROSORORONO

* A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all
edges go “forwards”, that is (vi,vj) EE=j>1

* (has a topological ordering= G isa DAG

Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

* We will design one algorithm that either outputsa
topological ordering or finds a directed cycle

Topological Ordering
* Observation: the first node must have no in-edges
OJOROIONORTR0

* Observation: In any DAG, there is always a node
with no incoming edges

Topological Ordering

* Fact: In any DAG, there is a node with no incoming
edges

* Thm: Every DAG has a topological ordering

* Proof (Induction):

Fast Topological Ordering

* Claim: ordering nodes by decreasing postorder
gives a topological ordering

* Proof:
* A DAG has no backward edges
» Suppose thisis not a topological ordering

* That means there exists an edge (u,v) such that
postorder[u] < postorder[v]

* We showed that any such (u,v) is a backward edge

e But there are no backward edges, contradiction!

Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy, ..., v, so that (vi,vj) EE=j>i

e Can compute a TO in O(n + m) time using DFS
» Reverse of post-order is a topological order

