CS3000: Algorithms & Data Jonathan Ullman

Lecture 9:

- Graphs
- Graph Traversals: DFS
- Topological Sort

Feb 5, 2020

What's Next

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

What's Next

Graph Algorithms:

- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
 - Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
 - Dijkstra
 - Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
 - Borůvka, Prim, Kruskal
- Network Flow:
 - Algorithms
 - Reductions to Network Flow

Graphs

Graphs: Key Definitions

- **Definition:** A directed graph G = (V, E)
 - V is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
 - An edge is an ordered e = (u, v) "from u to v"
- **Definition:** An undirected graph G = (V, E)
 - Edges are unordered e = (u, v) "between u and v"

- Simple Graph:
 - No duplicate edges
 - No self-loops e = (u, u)

 How many edges can there be in a simple directed/undirected graph?

whereked
$$0 \le m \le \frac{n(n-1)}{2} = \binom{n}{2}$$

Graph $m = 0 (n^2)$

Graphs Are Everywhere

- Transportation networks
- Communication networks
- WWW
- Biological networks
- Citation networks
- Social networks
- ...

- A path is a sequence of consecutive edges in E
 - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
 - $P = u w_1 w_2 w_3 \cdots w_{k-1} v$
 - The length of the path is the # of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

• A cycle is a path $v_1 - v_2 - \cdots - v_k - v_1$ and v_1, \ldots, v_k are distinct

- Suppose an undirected graph G is connected
 - True/False? G has at least n-1 edges

Typically be assume graphs are connected.
Thus m= 52(n)

Simple

- Suppose an undirected graph G has n-1 edges
 - True/False? G is connected

Trees

- A simple undirected graph G is a tree if:
 - *G* is connected
 - *G* contains no cycles
- Theorem: any two of the following implies the third
 - *G* is connected
 - *G* contains no cycles
 - G has = n 1 edges

Trees

• Rooted tree: choose a root node r and orient edges away from r

• Models hierarchical structure

Phylogeny Trees

Phylogenetic Tree of Life

Parse Trees

```
if (A[x]==2) then
  (32² + (a*64 +12)/8)
else
  fibonacci(n)
```


Representing a Graph

Adjacency Matrices

• The adjacency matrix of a graph G = (V, E) with nnodes is the matrix A[1:n, 1:n] where

$$A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

Cost $\mathfrak{S}(n^2)$ Space: $\mathfrak{A}(\mathcal{A}^2)$

Lookup: $\Theta(1)$ time

List Neighbors: Www time

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Adjacency Lists (Undirected)

$$\begin{array}{c}
\widehat{A(2)} \rightarrow \widehat{3} \\
\widehat{A(2)} \rightarrow \widehat{1} \rightarrow \widehat{3}
\end{array}$$

• The adjacency list of a vertex $v \in V$ is the list A[v]

• The adjacency list of a vertex
$$v \in V$$
 is the list $A[v]$ of all u s.t. $(v, u) \in E$
$$A[1] = \{2,3\}$$

$$A[2] = \{1,3\}$$

$$A[3] = \{1,2,4\}$$

Space: O(n+m)

 $A[4] = {3}$

Given a graph G=(U,E) and a node UEV

the degree of V is the #of neighbors

deg (V)

deg (V)

 $\sum_{v \in V} 1 + \deg(v) = \sum_{v \in V} 1 + \sum_{v \in V} \deg(v)$ = n + m

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
 - $A_{out}[v]$ of all $u(s.t.)(v,u) \in E$
 - $A_{in}[v]$ of all u s.t. $(u, v) \in E$

$$A_{out}[1] = \{2,3\}$$
 $A_{in}[1] = \{\}$
 $A_{out}[2] = \{3\}$ $A_{in}[2] = \{1\}$
 $A_{out}[3] = \{\}$ $A_{in}[3] = \{1,2,4\}$
 $A_{out}[4] = \{3\}$ $A_{in}[4] = \{\}$

Exploring a Graph

Exploring a Graph

- Problem: Is there a path from s to t?
- Idea: Explore all nodes reachable from s.

- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - Depth-First Search: follow a path until you get stuck, then go back

Exploring a Graph

- BFS/DFS are general templates for graph algorithms
 - Extensions of Breadth-First Search:
 - 2-Coloring (Bipartiteness)
 - Shortest Paths
 - Minimum Spanning Tree (Prim's Algorithm)
 - Extensions of Depth-First Search:
 - Topological Sorting

Depth-First Search (DFS)

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
    explored[u] = 1

for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS(v)
```


- . Explores every node that is connected to u.
- . The parent pomeers forms a tree (no cycles)
- . For every v, reachable from u, there is a unique u > v path formed by the red edges

Depth-First Search (Running Time)

G = (V, E) is a graph $explored[u] = 0 \forall u$ DFS(u): explored[u] = 1for ((u,v) in E): if (explored[v]=0): parent[v] = uDFS(v)

- . For every node VEV, we make one call to DFS(V)
- · If we call DFS (v) then the time to execute the call is O(1+ deg(v)). Time is $\sum_{v \in V} O(1+ deg(v))$ = O(n+m)

Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
 - Tree edges: (u,a),(u,b),(b,c) "Parent edges"
 - These are the edges that explore new nodes
 - Forward edges: (u, c)
 - Ancestor to descendant
 - Backward edges: (a, u)
 - Descendant to ancestor
 - Implies a directed cycle!
 - **Cross edges:** (*b*, *a*)
 - No ancestral relation

- DFS starting from node a
 - Search in alphabetical order
 - Label edges with {tree,forward,backward,cross}

Post-Ordering

```
G = (V, E) is a graph
explored[u] = 0 \forall u
DFS(u):
 explored[u] = 1
  for ((u,v) in E):
    if (explored[v]=0):
     parent[v] = u
     DFS(v)
 post-visit(u)
```


Vertex	Post-Order

- Maintain a counter clock, initially set clock = 1
- post-visit(u):
 set postorder[u]=clock, clock=clock+1

Pre-Ordering

```
G = (V, E) is a graph
explored[u] = 0 \forall u
DFS(u):
 explored[u] = 1
 pre-visit(u)
  for ((u,v) in E):
    if (explored[v]=0):
     parent[v] = u
     DFS(v)
```


Vertex	Pre-Order

- Maintain a counter clock, initially set clock = 1
- pre-visit(u):
 set preorder[u]=clock, clock=clock+1

- Compute the **post-order** of this graph
 - DFS from a, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order								

- Compute the **post-order** of this graph
 - DFS from a, search in alphabetical order

Vertex	а	b	C	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

 Observation: if postorder[u] < postorder[v] then (u,v) is a backward edge

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

- Observation: if postorder[u] < postorder[v] then (u,v) is a backward edge
 - DFS(u) can't finish until its children are finished
 - If (u,v) is a tree edge, then postorder[u] > postorder[v]
 - If (u,v) is a forward edge, then postorder[u] > postorder[v]
 - If postorder[u] < postorder[v], then DFS(u) finishes before DFS(v), thus DFS(v) is not called by DFS(u)
 - When we ran DFS(u), we must have had explored[v]=1
 - Thus, DFS(v) started before DFS(u)
 - DFS(v) started before DFS(u) but finished after
 - Can only happen for a backward edge

Topological Ordering

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from $v_1, ..., v_n$ so that all edges go "forwards", that is $(v_i, v_i) \in E \Rightarrow j > i$
 - G has a topological ordering $\Rightarrow G$ is a DAG

Directed Acyclic Graphs (DAGs)

- **Problem 1:** given a digraph G, is it a DAG?
- **Problem 2:** given a digraph G, can it be topologically ordered?

- Thm: G has a topological ordering \iff G is a DAG
 - We will design one algorithm that either outputs a topological ordering or finds a directed cycle

Topological Ordering

• Observation: the first node must have no in-edges

 Observation: In any DAG, there is always a node with no incoming edges

Topological Ordering

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering
- Proof (Induction):

Fast Topological Ordering

 Claim: ordering nodes by decreasing postorder gives a topological ordering

Proof:

- A DAG has no backward edges
- Suppose this is **not** a topological ordering
 - That means there exists an edge (u,v) such that postorder[u] < postorder[v]
 - We showed that any such (u,v) is a backward edge
 - But there are no backward edges, contradiction!

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
 - Label nodes v_1, \dots, v_n so that $(v_i, v_j) \in E \Longrightarrow j > i$

- Can compute a TO in O(n+m) time using DFS
 - Reverse of post-order is a topological order