W

CS 3000: Algorithms & Data
Jonathan Ullman

Lecture 19:
* Data Compression
* Greedy Algorithms: Huffman Codes

RermmEs o, 4070

Data Compression

* How do we store strings of text compactly?
A\eha\oe+

* A binary code is a mapping fron@ﬁ {0,1}

» Simplest code: assign numbers 1,2, ..., |X| to each
symbol, map to binary numbers of [log,|Z|] bits ™~

Ae= Jo=== Seee A: 00000

B=eooe K=0- T= 2: oooo |

8-0-0 ho-oo 300- e- 00010
. -00 - (X X L

* Morse Code.j E e Neo W eon o 000\
calo b coda Foee=0 Ouee X=00-
(\Jara le \ef\j—\ co Emme Peres e

Heeoeoe Q=—0= Z==00
X Re=e

Data Compression

* Letters have uneven frequencies!

* Want to use short encodings for frequent letters, long
encodings for infrequent leters

I S S
2 —

Encoding 1 00 01 10 11 [<
BN Encoding 2 0 10 110 111 1.75

\}\N\\X

Data Compression
* What properties would a good code have?

 Easy to encode a string

Encode(KTS)=—e —‘—lo 0 o\
- T bty pas let+ta0

MWQ
j 3\,;:_,\ sore G.tqumcrc,s

—

* The encoding is short on average
< 4 bits per letter (30 symbols max!)

* Easy to decode a string? g\.- Jo=== Seee
-—000 K=o= T=
XS DECOdE(—.——. ® .)= C=e=0¢ | 0o=00 Uoe-
N < D=ee M == Veeoeo=
oSt | 2 EO N=-e We==
00=0 (Omm= X=00=
T &T—T S G--. Pe==¢ Y=@==
Te TTeee Heeoe Q--e- 7Z--eo
oo Re=e

ENT .

Prefix Free Codes

e Cannot decode if there are ambiguitiﬁ

c:
S

* e.g. enc(“E”) is a prefix of enc(“S”)

§° Prefix-Free Code: * (

* Abinary enc: ¥ — {0,1}* such that

for every x # y € £, enc(x) is not a prefix of enc(y)

* Any fixed-length code is prefix-free

a- 60
. Ol

A W\

o, O
b: O
c.e \\ O
ds 1)

(o Freﬁm—(-‘/\e.e veutolle “‘,m?%}\

Q--e-

Re=e

Seee
T =
Uee=
Veoo=
We==
X=00=
Y=0==
/==00

Prefix Free Codes

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
odab_)WM OO[,;IE‘O[\
* Decode by going down the tree

+011/0001p01l010l1/011]
b e a d ¢ & b

Huffman Codes

* (An algorithm to find) an optimal prefix-free code
querage nuebe of brts

J} peS le4tes

*optimal=_ min len(T) = ;g9 f; - leny (i)

prefix—free T

* Note, optimality depends on what you’re compressing

* His the 8" most frequent letter in English (6.094%) but the 20th
most frquent in Italian (0.636%)

_—-——
v
0 10 110 111

Prl~x RBra+ £ ox3d+ £x2=1%s

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

. Balanced blnary trees shogld have low depth
L\ (R

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

first try
len =2.25

roore Hes

Jevovd
‘oo lo:»gx-"(' e v lewst frequent lettas

ol v Sesd, ‘3

Huffman Codes 22 .25 .43

ST Gabd Y3 $e d el
* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

“-_
.05

/ \
/@% °/ |

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* We’ll prove the theorem using an exchange argument

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (1) In an optimal prefix-free code (a tree), every internal node
has exactly two children

-
g © & \ggi

& ® o B

/ stac tly betiv
* ® J j(

sollog) |

- \ﬂ Hhe o@’h\ma] oo . F te lowert dl
\S d_) ‘HNU\ —HAeJ\c are a4 lear«/ ','Uo Ie”l\/‘cf

at a.(p‘)f\'\ d,J anck ‘H/\e\j are s:\o\m(ﬂS

®
®

CANT HAPPIN

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x, y have the lowest frequency, then there is an optimal
code where x, y are siblings and are at the bottom of the tree

(C-e- heawve He low et olqok\-s

%o?(;ose, Someonre ave aeo -Hme, -

o) tree but ortheot labels. ..
qft .- +L€/\ l SL\Ou\d 10v\°-2«‘

‘E,y 10\, *‘R >¥0L >7Pe_ /CD\O ‘I'L«. l«.-g\au-{ leaves uth

e most (-)r*cﬁu%m‘ SSP\LalI

Huffman Codes

[Theorem: Huffman’s Alg produces an optimal prefix-free code ({

* Proof by Induction on the Number of Letters in X:
* Base case (|Z]| = 2): rather obvious

- \naluc—h\rt, S“'QP‘. \-‘2 [,\Q).{lmms o.\? e olp-{-)v\o‘\ .ﬁg,
1) =k e A optnal Fo 1D =
-plc-—-l K ﬁp\
S

gu?Qosa ue hawe Fmﬂumcms 'ﬁ, Z Qz, > .
8/: 3\32)’51_"_’)&—-9\)&0§ ‘sz‘pk—\""p\c
1=/ =k

(D)= e £
= len CT'B + fh_l « L

rBJ ‘H’\Q nductinre FD‘H'*QYS T 15 an oﬁ'\ma\
oda —a[:o/ f[(mmwnu (—/>B

. SUPPDUL & % an op-l'r«\nl code —ﬁsu <z__.‘

) (\33 (Q\) \ﬂ'] W\O{ L are s~f\o\m7r ot —l’l«_ (oved'/
lewre | m[’ He Hree u}| 1CWZ\/

L e T

o N | [
s (U/() = len ((L\ - 1£l° B 7[)&—1 len (L!J\;nh(T:C;%/\(T>

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X
* Inductive Hypothesis:

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

* Without loss of generality, frequencies are f3, ..., fx, the
two lowest are f1, f>

* Merge 1,2 into a new letter k + 1 with f,.1 = f1 + f5

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

Without loss of generality, frequencies are f, ..., fi, the
two lowest are f1, f>

Merge 1,2 into a new letter k + 1 with f,,..1 = f1 + f>

By induction, if T’ is the Huffman code for f5, ..., fi+1,
then T' is optimal

Need to prove that T is optimal for f4, ..., f%

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

 If T" is optimal for f3, ..., fi+1 then T is optimal for fi, ..., fi

An Experiment

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

‘ char ’ frequency ‘ code | ‘ char | frequency | code | ‘ char | frequency | code |
— T 41005 1011 ‘R’ 37187 0101
‘g, 4241‘_?2 10}(1)(1)8 ‘T 710 | 1111011010 ‘S’ 37575 1000
“«c 13896 | 00100 ‘K’ 4782 11110111 ‘T 54024 000 | >
D’ 28041 0011 ‘© 22030 10101 ‘U 16726 01001
B 74809 NTRES ‘M’ 15298 01000 A 5199 1111010
P 13559 | 111111 ‘N’ 42380 1100 ‘W’ 14113 00101
‘G’ 12530 | 111110 ‘o’ 46499 1101 X’ 724 | 1111011011 | '©
H 38961 1001 P 9957 101001 Y’ 12177 111100
‘Q 667 | 1111011001 VA 215 | 1111011000 | 1 ©

* File size is now 439,688 bytes

| Raw | Huffman |
D 799940 439,688

AN

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* In what sense is this code really optimal?
(Bonus material... will not test you on this)

Length of Huffman Codes 4.
Cor wted”

* What can we say i)JT/lJffman code length?

* Suppose f; = or everyi € X
* Then, len; (i) = #; for the optimal Huffman code

Y died s
\eH'f o b c A
freq o 2 A2
i O 4 O (WO (L |

Length of Huffman Codes

* What can we say about Huffman code length?
* Suppose f; = 2~ %i foreveryi € X
* Then, len; (i) = #; for the optimal Huffman code

{len() = Sies f 1082(1/ﬁ)j

1\

Entropy

e Given a set of frequencies (aka a probability
distribution) the entropy is

H(f)—Zﬁ oga (/) = Loy f

o HN‘V\ codl

* Entropy is a “measure of randomness”

Entropy

e Given a set of frequencies (aka a probability
distribution) the entropy is

H(f) = Zfi - log, (1/fi) How “randos

f;s N deoxt
* Entropy is a “measure of randomness”
* Entropy was introduced by Shannon in 1948 and is
the foundational concept in:
* Data compression
* Error correction (communicating over noisy channels)
» Security (passwords and cryptography)

Entropy of Passwords

* Your password is a specific string, so f,,,,q = 1.0

* To talk about security of passwords, we have to
model them as random
* Random 16 letter string: H = 16 - log, 26 = 75.2
* Random IMDb movie: H = log, 1764727 = 20.7
* Your favorite IMDb movie: H «< 20.7

* Entropy measures how difficult passwords are to
guess “on average”

Entropy of Passwords

0000000oooo0ooon. ~28 BITS OF ENTROPY WAS IT TROMBONE? NO,
(N%Ncasmg&g_‘) ORDER alalelalelate TROUBADOR, AND ONE OF
. ooo || HE Os WAS A ZERQ?
BASE WORD UNKNCMN 0oo ;i 0 S \ .
B AND THERE WAS
2= 3DASAT || SOME SYHMBOL...
TF@U b4d0r &3 1000 GUESSES /seC
(e St v, o e
CAPS? GONMON N(MERA HASH 13 ENSTER, BUT 5 NOT WHAT THE
: SUBSTITUTONS P || s RS
e PONCTUATION | | DIFFICOLTY 0 GUESS: | | DIFFICULTY To REMEMBER:
T L oooo EAS(HARD
15 ONLY ONE OF A Féw CoMMoN FORMATS)

correct horse battery staple

- Lﬁ_JL_‘_—._/—Tﬁ_A

0oOoal Oac gaoo

FOOR RANDOM
COMMON WORDS

~ HH BITS OF ENTROPY
o0oaooponoao
_____ 1000000
aO0ooaopanaoc

pDoOngoooooao

2™ =550 YEARS AT
1000 GUESSES/SEC

HARD

DIFAICOLTY TO GUESS:

DIFFICULTY TO REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS ¢ EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

 length o

H(f) =Zfi'1082 (1/fi) - Ho}g:«n coda

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least H(f)
bits-per-letter to store S (as n =)
* Huffman codes are truly optimal!

But Wait!

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

‘ char ’ frequency ‘ code |
‘A 48165 1110
‘B’ 8414 | 101000
‘C 13896 | 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F 13559 | 111111
‘G’ 12530 | 111110
‘H’ 38961 1001

‘ char | frequency | code |
‘T 41005 1011
‘J 710 | 1111011010
‘K’ 4782 11110111
v 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘O’ 46499 1101
‘P’ 9957 101001
‘Q 667 | 1111011001

* File size is now 439,688 bytes

e But we can do better!

\ char | frequency | code |
‘R’ 37187 0101
‘S’ 37575 1000
T 54024 000
U 16726 01001
v’ 5199 1111010
‘W’ 14113 00101
X 724 | 1111011011
Y’ 12177 111100
A 215 | 1111011000

T e utman | g | b2
DA 799,940

439,688

301,295

220,156

What do the frequencies represent?

* Real data (e.g. natural language, music, images)
have patterns between letters

* U becomes a lot more common aftera Q

* Possible approach: model pairs of letters
* Build a Huffman code for pairs-of-letters
* Improves compression ratio, but the tree gets bigger
* Can only model certain types of patterns

 Zip is based on an algorithm called LZW that tries to
identify patterns based on the data

Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

H() =) fi-loga (1)

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least H(f)
bits-per-letter to store S

* Huffman codes are truly optimal if and only if there
is no relationship between different letters!

