CS3000: Algorithms & Data Jonathan Ullman

Lecture 18:

Greedy Algorithms: Proof Techniques

March 30, 2020

Obligatory Wall Street Quotation

The movie Wall Street, however, is not.

Greedy Algorithms

- What's a greedy algorithm?
 - I know it when I see it
 - Roughly, an algorithm that builds a solution myopically and never looks back (compare to DP)
 - Typically, make a single pass over the input (e.g. Kruskal)

Why care about greedy algorithms?

- Greedy algorithms are the fastest and simplest algorithms imaginable, and sometimes they work!
- Sometimes make useful heuristics when they don't
- Simplicity makes them easy to adapt to different models

Interval Scheduling

(Weighted) Interval Scheduling

- Input: n intervals (s_i, f_i) with values v_i
- Output: a compatible schedule S with the largest possible total value
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap
 - The total value of S is $\sum_{i \in S} v_i$

(Unweighted) Interval Scheduling

- Input: n intervals (s_i, f_i)
- Output: a compatible schedule S with the largest possible size
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap

Possibly Greedy Rules

Choose the shortest interval first

Choose the interval with earliest start first

Choose the interval with earliest finish first

Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Let S be empty
- For i = 1, ..., n:
 - If interval i doesn't create a conflict, add i to S
- Return S

- How do we know we found an optimal schedule
- "Greedy Stays Ahead" strategy
 - We'll show that at every point in time, the greedy schedule does better than any other schedule

- Let $G = \{i_1, ..., i_r\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t=1,\ldots,r,f_{i_t}\leq f_{j_t}$

- Let $G = \{i_1, ..., i_r\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t=1,\ldots,r,f_{i_t}\leq f_{j_t}$

- Let $G = \{i_1, ..., i_r\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t=1,\ldots,r,f_{i_t}\leq f_{j_t}$

- Let $G = \{i_1, ..., i_r\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t=1,\ldots,r,f_{i_t}\leq f_{j_t}$

Minimum Lateness Scheduling

Minimum Lateness Scheduling

- Input: n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs
 - Can only do one job at a time, no overlap
 - The lateness of job i is $\max\{f_i d_i, 0\}$
 - The lateness of a schedule is $\max_i \{ \max\{f_i d_i, 0\} \}$

Possible Greedy Rules

• Choose the shortest job first $(\min t_i)$?

• Choose the most urgent job first (min $d_i - t_i$)?

Greedy Algorithm: Earliest Deadline First

- Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
- For i = 1, ..., n:
 - Schedule job i right after job i-1 finishes

• G = greedy schedule, O = optimal schedule

- Exchange Argument:
 - We can transform O to G by exchanging pairs of jobs
 - Each exchange only reduces the lateness of O
 - Therefore the lateness of G is at most that of O

• G = greedy schedule, O = optimal schedule

- Observation: the optimal schedule has no gaps
 - A schedule is just an ordering of the jobs, with jobs scheduled back-to-back

• G = greedy schedule, O = optimal schedule

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
 - Observation: greedy has no inversions

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
- Claim: the optimal schedule has no inversions
 - Step 1: suppose *O* has an inversion, then it has an inversion *i*, *j* where *i*, *j* are consecutive

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
- Claim: the optimal schedule has no inversions
 - Step 1: suppose *O* has an inversion, then it has an inversion *i*, *j* where *i*, *j* are consecutive
 - Step 2: if *i*, *j* are a consecutive jobs that are inverted then flipping them only reduces the lateness

• If *i*, *j* are a consecutive jobs that are inverted then flipping them only reduces the lateness

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
- Claim: the optimal schedule has no inversions
 - Step 1: suppose *O* has an inversion, then it has an inversion *i*, *j* where *i*, *j* are consecutive
 - Step 2: if *i*, *j* are a consecutive jobs that are inverted then flipping them only reduces the lateness

• G is the unique schedule with no inversions, O is the unique schedule with no inversions, G = O