Lecture 18:
• Greedy Algorithms: Proof Techniques

March 30, 2020
The movie *Wall Street*, however, is not.
Greedy Algorithms

• What’s a greedy algorithm?
 • I know it when I see it
 • Roughly, an algorithm that builds a solution myopically and never looks back (compare to DP)
 • Typically, make a single pass over the input (e.g. Kruskal)

• Why care about greedy algorithms?
 • Greedy algorithms are the fastest and simplest algorithms imaginable, and sometimes they work!
 • Sometimes make useful heuristics when they don’t
 • Simplicity makes them easy to adapt to different models
Interval Scheduling
(Weighted) Interval Scheduling

- **Input:** n intervals (s_i, f_i) with values v_i
- **Output:** a compatible schedule S with the largest possible total value
 - A schedule is a subset of intervals $S \subseteq \{1, \ldots, n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap
 - The total value of S is $\sum_{i \in S} v_i$
(Unweighted) Interval Scheduling

- **Input:** \(n \) intervals \((s_i, f_i)\)
- **Output:** a compatible schedule \(S \) with the largest possible size
 - A schedule is a subset of intervals \(S \subseteq \{1, ..., n\} \)
 - A schedule \(S \) is compatible if no two \(i, j \in S \) overlap
Possibly Greedy Rules

• Choose the shortest interval first

• Choose the interval with earliest start first

• Choose the interval with earliest finish first
Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Let S be empty
- For $i = 1, \ldots, n$:
 - If interval i doesn’t create a conflict, add i to S
- Return S
Greedy Stays Ahead

• How do we know we found an optimal schedule

• “Greedy Stays Ahead” strategy
 • We’ll show that at every point in time, the greedy schedule does better than any other schedule
Greedy Stays Ahead

• Let $G = \{i_1, ..., i_r\}$ be greedy’s schedule
• Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
• **Key Claim:** for every $t = 1, ..., r$, $f_{i_t} \leq f_{j_t}$
Greedy Stays Ahead

• Let $G = \{i_1, \ldots, i_r\}$ be greedy’s schedule
• Let $O = \{j_1, \ldots, j_s\}$ be some optimal schedule
• **Key Claim:** for every $t = 1, \ldots, r$, $f_{i_t} \leq f_{j_t}$
Greedy Stays Ahead

• Let $G = \{i_1, \ldots, i_r\}$ be greedy’s schedule
• Let $O = \{j_1, \ldots, j_s\}$ be some optimal schedule
• Key Claim: for every $t = 1, \ldots, r$, $f_{i_t} \leq f_{j_t}$
Greedy Stays Ahead

• Let $G = \{i_1, \ldots, i_r\}$ be greedy’s schedule
• Let $O = \{j_1, \ldots, j_s\}$ be some optimal schedule
• **Key Claim:** for every $t = 1, \ldots, r$, $f_{i_t} \leq f_{j_t}$
Minimum Lateness Scheduling
Minimum Lateness Scheduling

- **Input:** \(n \) jobs with length \(t_i \) and deadline \(d_i \)
 - Simplifying assumption: all deadlines are distinct
- **Output:** a minimum-lateness schedule for the jobs
 - Can only do one job at a time, no overlap
 - The lateness of job \(i \) is \(\max\{f_i - d_i, 0\} \)
 - The lateness of a schedule is \(\max_i\{\max\{f_i - d_i, 0\}\} \)
Possible Greedy Rules

• Choose the shortest job first \((\min t_i)\)?

• Choose the most urgent job first \((\min d_i - t_i)\)?
Greedy Algorithm: Earliest Deadline First

• Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
• For $i = 1, \ldots, n$:
 • Schedule job i right after job $i - 1$ finishes
Exchange Argument

• $G = \text{greedy schedule}, \ O = \text{optimal schedule}$

• Exchange Argument:
 • We can transform O to G by exchanging pairs of jobs
 • Each exchange only reduces the lateness of O
 • Therefore the lateness of G is at most that of O
Exchange Argument

• $G = \text{greedy schedule, } O = \text{optimal schedule}$

• Observation: the optimal schedule has no gaps
 • A schedule is just an ordering of the jobs, with jobs scheduled back-to-back
Exchange Argument

- $G =$ greedy schedule, $O =$ optimal schedule

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
 - Observation: greedy has no inversions
Exchange Argument

• We say that two jobs \(i, j \) are inverted in \(O \) if \(d_i < d_j \) but \(j \) comes before \(i \)

• Claim: the optimal schedule has no inversions
 • Step 1: suppose \(O \) has an inversion, then it has an inversion \(i, j \) where \(i, j \) are consecutive
Exchange Argument

• We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i

• Claim: the optimal schedule has no inversions
 • Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
 • Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness
Exchange Argument

• If i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness
Exchange Argument

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i

- Claim: the optimal schedule has no inversions
 - Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
 - Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

- G is the unique schedule with no inversions, O is the unique schedule with no inversions, $G = O$