CS3000: Algorithms & Data
Jonathan Ullman

Lecture 18:
 Greedy Algorithms: Proof Techniques

March 30, 2020

Obligatory Wall Street Quotation

“GREED IS GOOD~

Gordon Gekko

The movie Wall Street, however, is not.

Greedy Algorithms

 What’s a greedy algorithm?
| know it when | see it

* Roughly, an algorithm that builds a solution myopically
and never looks back (compare to DP)

* Typically, make a single pass overthe input (e.g. Kruskal)

* Why care about greedy algorithms?

e Greedy algorithms are the fastest and simplest
algorithms imaginable, and sometimes they work!

* Sometimes make useful heuristics when they don’t
* Simplicity makes them easy to adapt to different models

Interval Scheduling

(Weighted) Interval Scheduling

* Input: n intervals (s;, f;) with values v;

* Output: a compatible schedule S with the largest
possible total value
* Ascheduleisasubset ofintervals S C {1, ...,n}
* Aschedule S is compatibleifnotwo i,j € S overlap
* The total value of S is }};cs V;

(Unweighted) Interval Scheduling

* Input: n intervals (s;, f;)

* Output: a compatible schedule S with the largest
possible size
* Ascheduleisasubset ofintervals S C {1, ...,n}
* Aschedule S is compatibleifnotwo i,j € S overlap

Possibly Greedy Rules

* Choose the shortest interval first

* Choose the interval with earliest start first

* Choose the interval with earliest finish first

Greedy Algorithm: Earliest Finish First

* Sortintervalssothat f; < f, < - < f,
* Let S be empty

*Fori =1,...,n:
* Ifinterval i doesn’t create a conflict,add i to S

e Return S

Greedy Stays Ahead

* How do we know we found an optimal schedule

* “Greedy Stays Ahead” strategy

 We’ll show that at every pointin time, the greedy
schedule does better than any other schedule

Greedy Stays Ahead

* let G = {iy, ..., 1, } be greedy’s schedule
* Let 0 ={j4, ..., s} be some optimal schedule

* Key Claim:foreveryt = 1,..,7, f;, < f;,

Greedy Stays Ahead

* let G = {iy, ..., 1, } be greedy’s schedule
* Let 0 ={j4, ..., s} be some optimal schedule

* Key Claim:foreveryt = 1,..,7, f;, < f;,

Greedy Stays Ahead

* let G = {iy, ..., 1, } be greedy’s schedule
* Let 0 ={j4, ..., s} be some optimal schedule

* Key Claim:foreveryt = 1,..,7, f;, < f;,

Greedy Stays Ahead

* let G = {iy, ..., 1, } be greedy’s schedule
* Let 0 ={j4, ..., s} be some optimal schedule

* Key Claim:foreveryt = 1,..,7, f;, < f;,

Minimum Lateness Scheduling

Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
* Simplifyingassumption: all deadlines are distinct

* OQutput: a minimum-lateness schedule for the jobs
 Canonlydo one job at atime, no overlap
* The lateness of job i is max{f; — d;, 0}
* The lateness of a schedule is ml_ax{max{fi —d;,0}}

Length 1 Deadline 2

w1]

Length 2 Deadline 4
Job 2 | | |

Length 3 Deadline 6
Job 3 | | |

Solution: | I |

Job 1: Job 2: Job 3:
done at done at done at
time 1 time 1+2=3 time 1+2+3=6

Possible Greedy Rules

* Choose the shortest job first (min t;)?

* Choose the most urgent job first (mind; — t;)?

Greedy Algorithm: Earliest Deadline First

* Sortjobssothatd; <d, <+ <d,

Fori=1,..,n:
* Schedule jobi right after job i — 1 finishes

Exchange Argument
* G = greedy schedule, O = optimal schedule

* Exchange Argument:
* We can transform O to G by exchanging pairs of jobs
e Each exchange only reduces the lateness of O
* Therefore the lateness of G is at most that of O

Exchange Argument
* G = greedy schedule, O = optimal schedule

* Observation: the optimal schedule has no gaps

* Ascheduleisjust an ordering of the jobs, with jobs
scheduled back-to-back

Exchange Argument
* G = greedy schedule, O = optimal schedule

* We say that two jobs i, are inverted in O if
d; < d;but j comes before
* Observation: greedy has no inversions

Exchange Argument

* We say that two jobs i,j are inverted in O if
d; < djbut j comes before i

* Claim: the optimal schedule has no inversions

» Step 1: suppose O has an inversion, then it has an
inversion i, j where i, j are consecutive

Exchange Argument

* We say that two jobs i,j are inverted in O if
d; < djbut j comes before i

* Claim: the optimal schedule has no inversions

e Step 1: suppose O has an inversion, then it has an
inversion i, j where i, j are consecutive

» Step 2:if i, j are a consecutive jobs that are inverted
then flippingthem only reduces the lateness

Exchange Argument

* If i, j are a consecutive jobs that are inverted then
flipping them only reduces the lateness

Exchange Argument

* We say that two jobs i,j are inverted in O if
d; < djbut j comes before i

* Claim: the optimal schedule has no inversions

» Step 1: suppose O has an inversion, then it has an
inversion i, j where i, j are consecutive

» Step 2:if i, j are a consecutive jobs that are inverted
then flippingthem only reduces the lateness

* G is the unique schedule with no inversions, O is
the unique schedule with no inversions, G = O

