Lecture 18:
• Greedy Algorithms: Proof Techniques

March 30, 2020
The movie *Wall Street*, however, is not.
Greedy Algorithms

• What’s a greedy algorithm?
 • I know it when I see it
 • Roughly, an algorithm that builds a solution myopically and never looks back (compare to DP)
 • Typically, make a single pass over the input (e.g. Kruskal)

• Why care about greedy algorithms?
 • Greedy algorithms are the fastest and simplest algorithms imaginable, and sometimes they work!
 • Sometimes make useful heuristics when they don’t
 • Simplicity makes them easy to adapt to different models
Interval Scheduling
(Weighted) Interval Scheduling

• **Input:** \(n \) intervals \((s_i, f_i)\) with values \(v_i \)

• **Output:** a compatible schedule \(S \) with the largest possible total value

 • A schedule is a subset of intervals \(S \subseteq \{1, \ldots, n\} \)

 • A schedule \(S \) is compatible if no two \(i, j \in S \) overlap

 • The total value of \(S \) is \(\sum_{i \in S} v_i \)
(Unweighted) Interval Scheduling

- **Input:** n intervals (s_i, f_i)
- **Output:** a compatible schedule S with the largest possible size
 - A schedule is a subset of intervals $S \subseteq \{1, \ldots, n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap

A compatible subset of size 3
Possibly Greedy Rules

• Choose the shortest interval first
 \[(1 \quad 2 \quad 3)\]
 \[\text{OPT} = 2\]
 \[\text{GREEDY} = 1\]

• Choose the interval with earliest start first
 \[\text{OPT} = 4\]
 \[\text{GREEDY} = 1\]

• Choose the interval with earliest finish first
 \[(1 \quad 2 \quad 3)\]
 \[\text{OPT} = 2\]
Greedy Algorithm: Earliest Finish First

• Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
• Let S be empty
• For $i = 1, \ldots, n$:
 • If interval i doesn’t create a conflict, add i to S
• Return S
Greedy Stays Ahead

Proof by Induction

• How do we know we found an optimal schedule

• “Greedy Stays Ahead” strategy
 • We’ll show that at every point in time, the greedy schedule does better than any other schedule

Purple = greedy
Red = some other schedule
Greedy Stays Ahead

• Let \(G = \{i_1, \ldots, i_r\} \) be greedy’s schedule
• Let \(O = \{j_1, \ldots, j_s\} \) be some optimal schedule
• **Key Claim:** for every \(t = 1, \ldots, r \), \(f_{i_t} \leq f_{j_t} \)

![Diagram showing scheduling]

\[
\begin{align*}
G &= \{1, 3, 5, 8\} \\
O &= \{2, 4, 7\} \\
i_1 &= 1 \\
i_2 &= 3 \\
i_3 &= 5 \\
i_4 &= 9 \\
j_1 &= 2 \\
j_2 &= 4 \\
j_3 &= 7 \\
j_4 &= 9
\end{align*}
\]
Greedy Stays Ahead

• Let \(G = \{i_1, ..., i_r\} \) be greedy’s schedule
• Let \(O = \{j_1, ..., j_s\} \) be some optimal schedule

Key Claim: for every \(t = 1, ..., r, f_{i_t} \leq f_{j_t} \)

Claim \(\Rightarrow \) Greedy is optimal

Then \(s_{j_{r+1}} > f_{j_r} > f_{i_r} \) \(\Rightarrow \) greedy would also choose \(j_{r+1} \)

\[f_{i_1} \leq f_{j_1}, \quad f_{i_2} \leq f_{j_2}, \quad f_{i_3} \leq f_{j_3}, \quad f_{i_4} \leq f_{j_4} \]

Would also be chosen by greedy
Greedy Stays Ahead

• Let $G = \{i_1, \ldots, i_r\}$ be greedy’s schedule
• Let $O = \{j_1, \ldots, j_s\}$ be some optimal schedule
• **Key Claim:** for every $t = 1, \ldots, r$, $f_{i_t} \leq f_{j_t}$

Proof by Induction:

- **Base Case:** $f_{i_1} \leq f_{j_1}$ (Because greedy always chooses the first interval to finish.)

- **Inductive Step:**

 If $f_{i_t} \leq f_{j_t}$ then $f_{i_{t+1}} \leq f_{j_{t+1}}$

\[
i_t \rightarrow \square \quad \square \rightarrow i_{t+1}
\]

\[
j_t \rightarrow \square \quad \square \rightarrow j_{t+1}
\]
Greedy Stays Ahead

• Let \(G = \{i_1, \ldots, i_r\} \) be greedy’s schedule
• Let \(O = \{j_1, \ldots, j_s\} \) be some optimal schedule
• **Key Claim:** for every \(t = 1, \ldots, r \), \(f_{i_t} \leq f_{j_t} \)

Proof of Inductive Step:

If \(f_{i_t} \leq f_{j_t} \) then \(f_{i_{t+1}} \leq f_{j_{t+1}} \).

Suppose this were false.

Greedy would have considered \(j_{t+1} \) before \(i_{t+1} \), and chosen it.
Minimum Lateness Scheduling
Minimum Lateness Scheduling

- **Input:** n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- **Output:** a minimum-lateness schedule for the jobs
 - Can only do one job at a time, no overlap
 - The lateness of job i is $\max\{f_i - d_i, 0\}$
 - The lateness of a schedule is $\max_i\{\max\{f_i - d_i, 0\}\}$

![Diagram showing a schedule with no lateness]

This schedule has 0 lateness.
Possible Greedy Rules

• Choose the shortest job first (min t_i)?

 \[
 \begin{align*}
 \text{Job 1:} & \quad (t_1 = 1) \quad d_1 = 20 \\
 \text{Job 2:} & \quad (t_2 = 10) \quad d_2 = 10
 \end{align*}
 \]

• Choose the most urgent job first (min $d_i - t_i$)?

 \[
 \begin{align*}
 \text{Job 1:} & \quad (t_1 = 1) \quad d_1 = 2 \\
 \text{Job 2:} & \quad (t_2 = 10) \quad d_2 = 10
 \end{align*}
 \]
Greedy Algorithm: Earliest Deadline First

- Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
- For $i = 1, \ldots, n$:
 - Schedule job i right after job $i - 1$ finishes

\[
\begin{align*}
\text{Job 1:} & \quad (t_1 = 1) \quad d_1 = 20 \\
\text{Job 2:} & \quad (t_2 = 10) \quad d_2 = 10
\end{align*}
\]

Greedy would choose 2 then 1 or latency 0

\[
\begin{align*}
\text{Job 1:} & \quad (t_1 = 1) \quad d_1 = 2 \\
\text{Job 2:} & \quad (t_2 = 10) \quad d_2 = 10
\end{align*}
\]

Greedy would do 2 then 1 or latency 0
Exchange Argument

- $G = \text{greedy schedule}, \ O = \text{optimal schedule}$

- Exchange Argument:
 - We can transform O to G by exchanging pairs of jobs
 - Each exchange only reduces the lateness of O
 - Therefore the lateness of G is at most that of O
Exchange Argument

- $G = \text{greedy schedule}, \ O = \text{optimal schedule}$

- Observation: the optimal schedule has no gaps
 - A schedule is just an ordering of the jobs, with jobs scheduled back-to-back
Exchange Argument

- $G =$ greedy schedule, $O =$ optimal schedule

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
 - Observation: greedy has no inversions
Exchange Argument

• We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i

• Claim: the optimal schedule has no inversions
 • Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive

• Alternative Form: If a schedule has inversions, then there is a schedule that is at least as good without inversions
Exchange Argument

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i

- Claim: the optimal schedule has no inversions
 - Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
 - Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

\[
\text{lateness of } i : t_i + t_j - d_i \\
\text{lateness of } j : t_i + t_j - d_j \\
\]
Exchange Argument

- If i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

$t_i + t_j - d_i > t_i + t_j - d_j$
Exchange Argument

• We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i

• Claim: the optimal schedule has no inversions
 • Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
 • Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

• G is the unique schedule with no inversions, O is the unique schedule with no inversions, $G = O$