CS3000: Algorithms & Data Jonathan Ullman

Lecture 18:

Greedy Algorithms: Proof Techniques

March 30, 2020

Obligatory Wall Street Quotation

The movie Wall Street, however, is not.

Greedy Algorithms

- What's a greedy algorithm?
 - I know it when I see it
 - Roughly, an algorithm that builds a solution myopically and never looks back (compare to DP)
 - Typically, make a single pass over the input (e.g. Kruskal)
- Why care about greedy algorithms?
 - Greedy algorithms are the fastest and simplest algorithms imaginable, and sometimes they work!
 - Sometimes make useful heuristics when they don't
 - Simplicity makes them easy to adapt to different models

Interval Scheduling

(Weighted) Interval Scheduling

- Input: n intervals (s_i, f_i) with values v_i
- Output: a compatible schedule S with the largest possible total value
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap
 - The total value of S is $\sum_{i \in S} v_i$

(Unweighted) Interval Scheduling

- Input: n intervals (s_i, f_i)
- Output: a compatible schedule S with the largest possible size
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap

Possibly Greedy Rules

Choose the shortest interval first

```
\begin{pmatrix} 2 & & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} & 3 & & \\ & & \\ & & \end{pmatrix}
\begin{pmatrix} & 1 & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

Choose the interval with earliest start first

```
( ( ) ) ( ) OPT = 4 ( ) ( ) OPT = 4 ( ) ( ) OPT = 1
```

Choose the interval with earliest finish first

Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Let S be empty
- For i = 1, ..., n:
 - If interval i doesn't create a conflict, add i to S
- Return S

Proof by Induction

- How do we know we found an optimal schedule
- "Greedy Stays Ahead" strategy
 - We'll show that at every point in time, the greedy schedule does better than any other schedule

- Let $G = \{i_1, \dots, i_{\widehat{F}}\}$ be greedy's schedule
- e-x. G= {1,3,5,8}
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- Key Claim: for every $t=1,...,r,f_{i_t} \leq f_{i_t}$

$$i_1=1$$
 $0=\{2,4,\frac{2}{3}\}$
 $i_2=3$
 $i_3=5$
 $j_1=2$
 $i_4=9$
 $j_2=4$
 $j_3=7$
 $j_4=9$

- Let $G = \{i_1, ..., i_7\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t = 1, ..., r, f_{i_t} \le f_{j_t}$

- Let $G = \{i_1, ..., i_r\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t = 1, ..., r, f_{i_t} \le f_{j_t}$

- Proof by Induction:

 Because greedy always chooses the first interval to finish.
 - · Inductive Step:

$$j_{+} \rightarrow I$$
 f_{++}

Subtle part is arguing why this .p.z ture is impossible.

- Let $G = \{i_1, ..., i_r\}$ be greedy's schedule
- Let $O = \{j_1, ..., j_s\}$ be some optimal schedule
- **Key Claim:** for every $t=1,\ldots,r$, $f_{i_t}\leq f_{j_t}$

Proof of Inductive Step:

If
$$f_{i_{+}} \leq f_{j_{+}}$$
 then $f_{i_{++}} \leq f_{j_{++}}$

Suppose this were false.

Greedy would have considered j++, before i++, and chosen it

Minimum Lateness Scheduling

Minimum Lateness Scheduling

- Input: n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs
 - Can only do one job at a time, no overlap
 - The lateness of job *i* is $\max\{f_i d_i, 0\}$
 - The lateness of a schedule is $\max\{\max\{f_i-d_i,0\}\}$

Possible Greedy Rules

• Choose the shortest job first (min t_i)?

• Choose the most urgent job first (min $d_i - t_i$)?

Job 1:
$$(t_1^2)$$
 | d_1^2 | $d_2 = 10$ | $d_3 = 10$ | $d_4 = 10$ |

Greedy Algorithm: Earliest Deadline First

- Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
- For i = 1, ..., n:
 - Schedule job i right after job i-1 finishes

Job 1: ()
$$t_1=1$$
 | $d_1=20$

Job 2: () $d_2=10$

Greedy would do 2 then L w) lateress 0

Job 1: ($t_1=1$) | $d_1=2$

Job 2: ($t_2=10$) $d_2=10$

Greedy would choose 1 then 2 or lateress 1

• G = greedy schedule, O = optimal schedule

- Exchange Argument:
 - We can transform O to G by exchanging pairs of jobs
 - Each exchange only reduces the lateness of O
 - Therefore the lateness of G is at most that of O

- G = greedy schedule, O = optimal schedule
- Observation: the optimal schedule has no gaps
 - A schedule is just an ordering of the jobs, with jobs scheduled back-to-back

- G = greedy schedule, O = optimal schedule
- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
 - Observation: greedy has no inversions

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
- Claim: the optimal schedule has no inversions
 - Step 1: suppose *O* has an inversion, then it has an inversion *i*, *j* where *i*, *j* are consecutive
- · Alternative Form: If a schedule has muerions, then there is a schedule that is of least as good usthart inversions

- We say that two jobs i, j are inverted in O if $d_i < d_i$ but j comes before i
- Claim: the optimal schedule has no inversions
 - Step 1: suppose O has an inversion, then it has an inversion i, j where i, j are consecutive
 - Step 2: if i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness latuess of c:

• If i, j are a consecutive jobs that are inverted then flipping them only reduces the lateness

- We say that two jobs i, j are inverted in O if $d_i < d_j$ but j comes before i
- Claim: the optimal schedule has no inversions
 - Step 1: suppose *O* has an inversion, then it has an inversion *i*, *j* where *i*, *j* are consecutive
 - Step 2: if *i*, *j* are a consecutive jobs that are inverted then flipping them only reduces the lateness

• G is the unique schedule with no inversions, O is the unique schedule with no inversions, G = O