Lecture 17:
More Applications of Network Flow

March 25, 2020
Image Segmentation

• Separate image into foreground and background

• We have some idea of:
 → • whether pixel i is in the foreground or background
 → • whether pair (i,j) are likely to go together
Image Segmentation

- **Input:**
 - an undirected graph \(G = (V, E) \); \(V = \text{“pixels”}, \ E = \text{“pairs”} \)
 - likelihoods \(a_i, b_i \geq 0 \) for every \(i \in V \)
 - separation penalty \(p_{ij} \geq 0 \) for every \((i, j) \in E \)

- **Output:**
 - a partition of \(V \) into \((A, B)\) that maximizes

\[
q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i, j) \in E} p_{ij}
\]

Assume all values in the graph were given externally.
Reduction to MinCut

• Differences between SEG and MINCUT:
 • SEG asks us to maximize, MINCUT asks us to minimize

\[
\max_x f(x) \quad \text{vs.} \quad \min_x -f(x)
\]

\[
\max_{A,B} \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} p_{ij}
\]

\[
\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E} p_{ij}
\]
Reduction to MinCut

• Differences between SEG and MINCUT:
 • SEG allows any partition, MINCUT requires $s \in A, t \in B$

Solution: Add “dummy nodes” s and t to the graph
Reduction to MinCut

- Differences between SEG and MINCUT:
 - SEG has edges **between A and B**, MINCUT considers edges **from A to B**

\[
\min_{A,B} \left(\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E} p_{ij} \right)
\]

Solution:
- Replace undirected edge \((i,j)\) \(uv\)
- \(i \rightarrow j\) and \(j \rightarrow i\)
- both with capacity \(p_{ij}\)

\[
\min_{A,B} \sum_{(i,j) \in E} p_{ij}
\]

Capacity \(p_{ij}\) in both directions
Reduction to MinCut

- Differences between SEG and MINCUT:
 - SEG has terms for each node in A,B, MINCUT only has terms for edges from A to B

\[
\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E} p_{ij}
\]

\[
\min_{A,B} \sum_{(i,j) \in E} p_{ij}
\]

Solution:
Use "dummy" edges from s and t

capacity: \(p_{xy} + p_{xz} \)
capacity we want:
\(p_{xy} + p_{xz} + b_x \)

+ \(a_y + a_z \)
Reduction to MinCut

• How should the reduction work?
 • capacity of the cut should correspond to the function we’re trying to minimize

\[
\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E \text{ from } A \text{ to } B} p_{ij}
\]

1. Replace \(\max \) with \(\min \)
2. Replace undirected edges with pairs of directed edges
3. Add dummy nodes \(s, t \)
4. Add dummy edges \(s \leadsto x \leadsto t \)
Step 1: Transform the Input

1. Replace max with min
2. Replace undirected edges with pairs of directed edges
3. Add dummy nodes s, t
4. Add dummy edges $s \rightarrow x \rightarrow t$

Total Time: $O(m+n)$
Step 2: Receive the Output

\[s, u, v, x, t \] were the original graph

Input \(G' \) for MINCUT

Output \((A,B)\) for MINCUT

Solve

\((A,B)\) is a minimum \(s,t\) cut in \(G' \)

Running Time:
Solve mincut on a graph with \(n+2 \) nodes and \(2M + 2n \) edges
\[\sim O(mn) \text{ time} \]
Step 3: Transform the Output

Output (A,B) for SEG

Return partition

\[A = \{ u, v \} \]
\[B = \{ w, x \} \]

Output (A,B) for MINCUT

![Graph](image)

Time: \(O(n) \)
Reduction to MinCut

• correctness?
 • Every partition \((A, B)\) of the original nodes corresponds to an \(s, t\) cut \((AuSs?, BuSs?)\)
 • For every \(s, t\) cut \((AuSs?, BuSs?)\) the capacity is
 \[
 \sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{(i,j) \in E} P_{ij} + \sum_{i \in A} \sum_{j \in B} P_{ij}
 \]

• running time?

 Total Time: \(O(mn)\)

Bottleneck is solving minimum cut
• Want to identify communities in a network.
 • “Community”: a set of nodes that have a lot of connections inside and few outside.
Densest Subgraph

• **Input:**
 • an undirected graph $G = (V, E)$

• **Output:**
 • a subset of nodes $A \subseteq V$ that maximizes $\frac{2|E(A,A)|}{|A|}$

- $E(A,A)$ = set of edges with both endpoints in A
- $E(A,B)$ = set of edges with one endpoint in A and one in B
1. DS uses an undirected graph
2. DS lets us choose any set A
 \[M\text{IN}\text{CUT} \text{ uses a directed edge} \]
 \[M\text{IN}\text{CUT} \text{ lets choose } s, t \text{ cut} \]

3. Add "dummy" nodes s, t

Same transformations as SEG

Need to transform the objective function:

DS
\[
\frac{2 \cdot |E(A,A)|}{|A|}
\]

MINCUT
\[
\sum\limits_{(i,j) \in E} c_{i,j}
\]
\[
\sum\limits_{i \in A} a_i + \sum\limits_{i \in B} b_i + \sum\limits_{(i,j) \in E \text{ btw } A, B} c_{i,j}
\]
using "dummy" edges
Reduction to MinCut

• Different objectives
 • maximize $\frac{2|E(A,A)|}{|A|}$ vs. minimize $|E(A,B)|$

• Suppose $\left[\frac{2|E(A,A)|}{|A|}\right] \geq \delta$ and see what that implies

 $\Leftrightarrow 2|E(A,A)| \geq \delta|A|$

 $\Leftrightarrow \Sigma_{v \in A} \deg(v) - |E(A,B)| \geq \delta|A|$

 $\Leftrightarrow \Sigma_{v \in V} \deg(v) - \Sigma_{v \in B} \deg(v) - |E(A,B)| \geq \delta|A|$

 $\Leftrightarrow 2|E| - \Sigma_{v \in B} \deg(v) - |E(A,B)| \geq \delta|A|$

 $\Leftrightarrow \Sigma_{v \in B} \deg(v) + \delta|A| + |E(A,B)| \leq 2|E|$

 $\Leftrightarrow \Sigma_{v \in B} \deg(v) + \Sigma_{v \in A} \delta + \Sigma_{e \text{ from } A \text{ to } B} 1 \leq 2|E|$

Claim: If I can ask yes/no questions “Is the DS denser than δ ?” then I can find the densest subgraph.
Reduction to MinCut

- Different objectives
 - maximize \(\frac{2|E(A,A)|}{|A|} \) vs. minimize \(|E(A, B)| \)

- Suppose \(\left\lceil \frac{2|E(A,A)|}{|A|} \right\rceil \geq \delta \) and see what that implies

\[
\iff 2|E(A, A)| \geq \delta |A|
\]

\[
\iff \sum_{v \in A} \deg(v) - |E(A, B)| \geq \delta |A|
\]

\[
\iff \sum_{v \in V} \deg(v) - \sum_{v \in B} \deg(v) - |E(A, B)| \geq \delta |A|
\]

\[
\iff 2|E| - \sum_{v \in B} \deg(v) - |E(A, B)| \geq \delta |A|
\]

\[
\iff \sum_{v \in B} \deg(v) + \delta |A| + |E(A, B)| \leq 2|E|
\]

\[
\iff \sum_{v \in B} \deg(v) + \sum_{v \in A} \delta + \sum_{e \text{ from } A \text{ to } B} \delta \leq 2|E|
\]

Claim: If I can ask yes/no questions “Is the DS drawn than \(\delta \)?” then I can find the densest subgraph.
\[\sum_{v \in B} \deg(v) + \sum_{v \in A} s + \sum_{e \text{ from } A \rightarrow B} 1 \]

If the value is \(\leq 2|E| \)
then the subgraph \(A \) has
\[\frac{2 \cdot |E(A,A)|}{|A|} \geq 5 \]
Reduction to MinCut

\[\sum_{v \in B} \deg(v) + \sum_{v \in A} \delta + \sum_{e \text{ from } A \text{ to } B} 1 \leq 2|E| \]

This graph has \(mn \)-cut \(\leq 2|E| \) if and only if there exists a subgraph of density \(> \delta \).