CS3000: Algorithms & Data
Jonathan Ullman

Lecture 14:
• Network Flow: flows, cuts, duality
• Ford-Fulkerson

Mar 11, 2020
Flow Networks
Flow Networks

- Directed graph $G = (V, E)$
- Two special nodes: source s and sink t
- Edge capacities $c(e)$
Flows

• An s-t flow is a function $f(e)$ such that
 • For every $e \in E$, $0 \leq f(e) \leq c(e)$ (capacity)
 • For every $v \in E$, $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

• The value of a flow is $\text{val}(f) = \sum_{e \text{ out of } s} f(e)$
Maximum Flow Problem

- Given $G = (V, E, s, t, \{c(e)\})$, find an s-t flow of max. value
Cuts

- An **s-t cut** is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\)
- The **capacity** of a cut \((A, B)\) is \(\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)\)

![Graph](image-url)
Minimum Cut problem

• Given $G = (V, E, s, t, \{c(e)\})$, find an s-t cut of min. capacity
Flows vs. Cuts

Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \text{val}(f)$$
Weak MaxFlow-MinCut Duality

• For any s-t flow f and any s-t cut (A, B) $\text{val}(f) \leq \text{cap}(A, B)$

• If f is a flow, (A, B) is a cut, and $\text{val}(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut
Augmenting Paths

• Given a network $G = (V,E,s,t,\{c(e)\})$ and a flow f, an **augmenting path** P is an $s \to t$ path such that $f(e) < c(e)$ for every edge $e \in P$
Greedy Max Flow

- Start with $f(e) = 0$ for all edges $e \in E$
- Find an augmenting path P
- Repeat until you get stuck
Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?
Residual Graphs

• Original edge: \(e = (u, v) \in E \).
 • Flow \(f(e) \), capacity \(c(e) \)

• Residual edge
 • Allows “undoing” flow
 • \(e = (u, v) \) and \(e^R = (v, u) \).
 • Residual capacity

• Residual graph \(G_f = (V, E_f) \)
 • Edges with positive residual capacity.
 • \(E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\} \).
Augmenting Paths in Residual Graphs

• Let G_f be a residual graph
• Let P be an augmenting path in the residual graph
• Fact: $f' = \text{Augment}(G_f, P)$ is a valid flow

Augment(G_f, P)

\[
\begin{align*}
b &\leftarrow \text{the minimum capacity of an edge in } P \\
\text{for } &e \in P \\
\text{if } &e \in E: \quad f(e) \leftarrow f(e) + b \\
\text{else:} &\quad f(e) \leftarrow f(e) - b \\
\text{return } &f
\end{align*}
\]
Ford-Fulkerson Algorithm

• Start with $f(e) = 0$ for all edges $e \in E$
• Find an **augmenting path** P in the **residual graph**
• Repeat until you get stuck
Ford-Fulkerson Algorithm

```plaintext
FordFulkerson(G, s, t, {c(e)})
    for e ∈ E: f(e) ← 0
    G_f is the residual graph

    while (there is an s-t path P in G_f)
        f ← Augment(G_f, P)
        update G_f

    return f
```

```plaintext
Augment(G_f, P)
    b ← the minimum capacity of an edge in P
    for e ∈ P
        if e ∈ E: f(e) ← f(e) + b
        else: f(e) ← f(e) - b
    return f
```
Ford-Fulkerson Demo

G:

```
      2
 s -- 3 -- 5 -- t
  10   2   10
         8
       9
```

```r
  2
 s -- 3 -- 5 -- t
  10   2   10
       8
      9
```
Ford-Fulkerson Demo

$G:$

$G_f:$
What do we want to prove?
Running Time of Ford-Fulkerson

• For **integer capacities**, $\leq val(f^*)$ augmentation steps

• Can perform each augmentation step in $O(m)$ time
 • find augmenting path in $O(m)$
 • augment the flow along path in $O(n)$
 • update the residual graph along the path in $O(n)$

• For integer capacities, FF runs in $O(m \cdot val(f^*))$ time
 • $O(mn)$ time if all capacities are $c_e = 1$
 • $O(mnC_{\text{max}})$ time for any integer capacities $\leq C_{\text{max}}$
 • Problematic when capacities are large—more on this later!
Correctness of Ford-Fulkerson

- **Theorem**: f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f

- **Strong MaxFlow-MinCut Duality**: The value of the max s-t flow equals the capacity of the min s-t cut

- We’ll prove that the following are equivalent for all f
 1. There exists a cut (A, B) such that $val(f) = cap(A, B)$
 2. Flow f is a maximum flow
 3. There is no augmenting path in G_f
Optimality of Ford-Fulkerson

• **Theorem:** the following are equivalent for all f
 1. There exists a cut (A, B) such that $val(f) = cap(A, B)$
 2. Flow f is a maximum flow
 3. There is no augmenting path in G_f
Optimality of Ford-Fulkerson

- **(3 → 1)** If there is no augmenting path in G_f, then there is a cut (A, B) such that $\text{val}(f) = \text{cap}(A, B)$
 - Let A be the set of nodes reachable from s in G_f
 - Let B be all other nodes
Optimality of Ford-Fulkerson

• **(3 → 1)** If there is no augmenting path in G_f, then there is a cut (A, B) such that $val(f) = cap(A, B)$

 • Let A be the set of nodes reachable from s in G_f
 • Let B be all other nodes

 • **Key observation:** no edges in G_f go from A to B

• If e is $A \rightarrow B$, then $f(e) = c(e)$
• If e is $B \rightarrow A$, then $f(e) = 0$
Summary

• **The Ford-Fulkerson Algorithm solves maximum s-t flow**
 • Running time $O(m \cdot \text{val}(f^*))$ in networks with integer capacities

• **Strong MaxFlow-MinCut Duality:** \text{max flow} = \text{min cut}
 • The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 • If f^* is a maximum s-t flow, then the set of nodes reachable from s in G_{f^*} gives a minimum cut
 • Given a max-flow, can find a min-cut in time $O(n + m)$
Ask the Audience

• Is this a maximum flow?

• Is there an integer maximum flow?

• Does every graph with integer capacities have an integer maximum flow?
Summary

• **The Ford-Fulkerson Algorithm solves maximum s-t flow**
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities

• **Strong MaxFlow-MinCut Duality:** max flow = min cut
 - The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f^* is a maximum s-t flow, then the set of nodes reachable from s in G_{f^*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time $O(n + m)$

• **Every graph with integer capacities has an integer maximum flow**
 - Ford-Fulkerson will return an integer maximum flow