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Flow Networks



Flow Networks

* Directed graph ¢ = (I/, E)
* Two special nodes: source s and sink £
» Edge capacities c(e)

sink



Flows

* An s-t flow is a function f(e) such that
* Foreverye € E,0 < f(e) < c(e) (capacity)

* Foreveryv €E, Y intovf(€) = Deoutofvf(€) (conservation)

* The value of aflow is val(f) = X, outorsf(€)

4/@<0 ™.
<

10 15 0 10

0 4

10

s . |

0
10

capacity — 15
flow 0 N 0 \/




Maximum Flow Problem

* Given G = (V,E,s,t,{c(e)}), find an s-t flow of max. value
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Cuts

* An s-t cutis a partition (4, B) of V withs € Aandt € B

* The capacity

source

of acut (4,B)iscap(4,B) = X, gutofa €(€)
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Minimum Cut problem

* Given G = (V,E,s,t,{c(e)}), find an s-t cut of min. capacity
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Flows vs. Cuts

* Fact: If f is any s-t flow and (4, B) is any s-t cut, then the
net flow across (A4, B) is equal to the amount leaving s
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Weak MaxFlow-MinCut Duality

* For any s-t flow f and any s-t cut (4, B) val(f) < cap(A4, B)

* If fisaflow, (4,B)isacut,and val(f) = cap(4, B), then
f is a max flow and (4, B) is a min cut



Augmenting Paths

» Givenanetwork G = (V,E,s,t,{c(e)}) and aflow f, an
augmenting path P isan s — t path such that f(e) < c(e)
for every edge e € P
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Greedy Max Flow

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P
* Repeat until you get stuck
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Does Greedy Work?

* Greedy gets stuck before finding a max flow
 How can we get from our solution to the max flow?
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Residual Graphs

* Original edge: e = (u,v) € E.
* Flow f(e), capacity c(e)

* Residual edge
* Allows “undoing” flow
« e =(u,v)ande® = (v,u).
e Residual capacity

* Residual graph Gf = (V, Ef)
* Edges with positive residual capacity.
 Ef ={e: f(e) < c(e)} U {e?: c(e) > 0}



Augmenting Paths in Residual Graphs

* Let Gf be a residual graph

* Let P be an augmenting path in the residual graph
* Fact: f° = Augment(Gy, P) is a valid flow

Augment (G;, P)
b <« the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « £f(e) - b
return £



Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck
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Ford-Fulkerson Algorithm

FordFulkerson (G,s, t, {c(e) })
for e € E: f(e) « 0
G; is the residual graph

while (there is an s-t path P in Gy)
f <« Augment (G, P)
update G;

return £

Augment (G;, P)
b < the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « £f(e) - b
return £



Ford-Fulkerson Demo




Ford-Fulkerson Demo




What do we want to prove?



Running Time of Ford-Fulkerson

* For integer capacities, < val(f*) augmentation steps

* Can perform each augmentation step in O(m) time
* find augmenting path in O(m)
* augment the flow along path in O(n)
« update the residual graph along the path in O(n)

 For integer capacities, FF runs in O(m : val(f*)) time
e O(mn) time if all capacitiesarec, = 1
* 0(mnCy.y) time for any integer capacities < Cpax
* Problematic when capacities are large—more on this later!



Correctness of Ford-Fulkerson

* Theorem: f is a maximum s-t flow if and only if there is no
augmenting s-t path in Gy

* Strong MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

* We’ll prove that the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting pathin G¢



Optimality of Ford-Fulkerson

* Theorem: the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting path in Gy



Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(4, B)

 Let A be the set of nodes reachable from s in Gf
 Let B be all other nodes



Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(4, B)

 Let A be the set of nodes reachable from s in Gf
 Let B be all other nodes
* Key observation: no edges in Gf go from A to B

original network

* IfeisA — B, then f(e) = c(e)
*IfeisB — A,then f(e) =0



Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow

* Running time O(m - val(f*)) in networks with integer capacities

* Strong MaxFlow-MinCut Duality: max flow = min cut

* The value of the maximum s-t flow equals the capacity of the
minimum s-t cut

* If f* is a maximum s-t flow, then the set of nodes reachable from s
in G+ gives a minimum cut

* Given a max-flow, can find a min-cut in time O(n + m)



Ask the Audience

e |s this a maximum flow?

* |s there an integer maximum flow?

* Does every graph with integer capacities have an integer
maximum flow?



Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow

* Running time O(m - val(f*)) in networks with integer capacities

* Strong MaxFlow-MinCut Duality: max flow = min cut

* The value of the maximum s-t flow equals the capacity of the
minimum s-t cut

* If f* is a maximum s-t flow, then the set of nodes reachable from s
in G+ gives a minimum cut

* Given a max-flow, can find a min-cut in time O(n + m)

* Every graph with integer capacities has an integer
maximum flow

* Ford-Fulkerson will return an integer maximum flow



