
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	14:	
• Network	Flow:	flows,	cuts,	duality
• Ford-Fulkerson

Mar	11,	2020

Office hours on for today
HUG 17 both due Mar 20th

Flow	Networks

Flow	Networks
• Directed	graph	! = #, %
• Two	special	nodes:	source	& and	sink	'
• Edge	capacities	()

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows
• An	s-t	flow is	a	function	*) such	that

• For	every) ∈ %,	0 ≤ *) ≤ () (capacity)
• For	every	. ∈ %,	∑ *)�

1	34	56	7 = ∑ *)�
1	685	69	7 (conservation)

• The	value of	a	flow	is	.:; * = 	∑ *)�
1	685	69	<

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Maximum	Flow	Problem
• Given	! = (#, %, &, ', {(())}),	find	an	s-t	flow	of	max.	value

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Val f 10 4 14 28

Cuts
• An	s-t	cut is	a	partition	(A, B) of	# with	& ∈ A and	' ∈ B

• The	capacity of	a	cut	(A, B) is	(:C A, B = ∑ ()�
1	685	69	D

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

A Ss 3 4,73 13 92,5 6,13
cap A B 10 8 10 28

Minimum	Cut	problem
• Given	! = (#, %, &, ', {(())}),	find	an	s-t	cut	of	min.	capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows	vs.	Cuts
• Fact:	If	* is	any	s-t	flow	and	(A, B) is	any	s-t	cut,	then	the	
net	flow	across	(A, B) is	equal	to	the	amount	leaving	s	

E *)
�

1	685	69	D
− E *)

�

1	34	56	D
= .:;(*)

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

9 1 8 14 4

28

Weak	MaxFlow-MinCut	Duality

• For	any	s-t	flow	* and	any	s-t	cut	(A, B) .:; * ≤ (:C A, B

• If	* is	a	flow,	(A, B) is	a	cut,	and	.:;(*) = (:C(A, B),	then	
* is	a	max	flow	and	(A, B) is	a	min	cut

val f 2 fle I fce
e fromA B efromB A

E 2 fle non negativity
efromA B

E I ece capacity

efron A B
capCA B

Augmenting	Paths
• Given	a	network	!	 = 	 (#, %, &, ', ()) and	a	flow	*,	an	
augmenting	path	G is	an	& → ' path	such	that	*()) < (())
for	every	edge) ∈ G

s

1

2

t

10

10

10 10

0 0

0

20

20

30

Adding flow uniformly
on an augmenting path

gives a new valid sit flow

I
xlo 10

Greedy	Max	Flow
• Start	with	*) = 0 for	all	edges) ∈ %
• Find	an	augmenting	path G
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Add as much asyou can on the path

h
T

x rI O l O

Does	Greedy	Work?
• Greedy	gets	stuck	before	finding	a	max	flow
• How	can	we	get	from	our	solution	to	the	max	flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

NBA diff btw two flows

The difference b to the Tuo flows
is an almost path that

to
useS L 2 in reverse

10

10

Residual	Graphs
• Original	edge:)	 = J, . ∈ 	%.

• Flow *()),	capacity	(())

• Residual	edge
• Allows	“undoing”	flow
•) = J, . and)K = ., J .
• Residual	capacity

• Residual	graph !L = #, %L
• Edges	with	positive	residual	capacity.
• %*	 =) ∶ 	*) < 	() 	∪)O ∶ 	() > 	0 .

Or ig
f e ele

Residual Edge

fief

Augmenting	Paths	in	Residual	Graphs
• Let	!L be	a	residual	graph
• Let	G be	an	augmenting	path	in	the	residual	graph
• Fact: *’	 = 	Augment(!L, G) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Ford-Fulkerson	Algorithm
• Start	with	*) = 0 for	all	edges) ∈ %
• Find	an	augmenting	path G in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

tis

Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c(e)})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Finding apathtakes
G 6 0 men by BFS

1 0 mtn toaugment
11 0 mtn to updatetheresidual graph

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062!:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

to

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

o o

E
E

T
y

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

A seasInfo la

y
41

co o

I

a

What	do	we	want	to	prove?

Running	Time	of	Ford-Fulkerson
• For	integer	capacities,≤ .:; *∗ augmentation	steps

• Can	perform	each	augmentation	step	in	[\ time
• find	augmenting	path	in	[\
• augment	the	flow	along	path	in	[]
• update	the	residual	graph	along	the	path	in	[]

• For	integer	capacities,	FF	runs	in	[\ ⋅ .:; *∗ time
• [\] time	if	all	capacities	are	(1 = 1
• [\]`abc time	for	any	integer	capacities	≤ `abc
• Problematic	when	capacities	are	large—more	on	this	later!

Assume for now

Correctness of	Ford-Fulkerson
• Theorem: * is	a	maximum	s-t	flow	if	and	only	if	there	is	no	
augmenting	s-t	path	in	!L

• Strong	MaxFlow-MinCut Duality:	The	value	of	the	max	s-t	
flow	equals	the	capacity	of	the	min	s-t	cut	

• We’ll	prove	that	the	following	are	equivalent	for	all	*
1. There	exists	a	cut	(A, B) such	that	.:; * = (:C(A, B)
2. Flow	* is	a	maximum	flow
3. There	is	no	augmenting	path	in	!L

ve y G
dua de

Optimality	of	Ford-Fulkerson
• Theorem:	the	following	are	equivalent	for	all	*

1. There	exists	a	cut	(A, B) such	that	.:; * = (:C(A, B)
2. Flow	* is	a	maximum	flow
3. There	is	no	augmenting	path	in	!L

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	!L,	then	there	is	a	
cut	(A, B) such	that	.:;(*) = (:C(A, B)
• Let	A be	the	set	of	nodes	reachable	from	& in	!L
• Let	B be	all	other	nodes

Note SEA c B because there is no augmentingpath

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	!L,	then	there	is	a	
cut	(A, B) such	that	.:;(*) = (:C(A, B)
• Let	A be	the	set	of	nodes	reachable	from	& in	!L
• Let	B be	all	other	nodes
• Key	observation:	no	edges	in	!L go	from	A to	B

• If) is	A → B,	then *) = ()
• If) is	B → A,	then	*) = 0

original network

s

t

A B
0

Cle

all f 2 He I fle
o

e A B e B A ece

2 fle
e A B

e Bele cap A B

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow

• Running	time	[\ ⋅ .:; *∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	*∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	!L∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	[] +\

51

so so
I SI Ford Fulkerson wouldnt

find this flow

Ask	the	Audience
• Is	this	a	maximum	flow?

• Is	there	an	integer	maximum	flow?
• Does	every	graph	with	integer	capacities have	an	integer	
maximum	flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow	

• Running	time	[\ ⋅ .:; *∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	*∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	!L∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	[] +\

• Every	graph	with	integer	capacities	has	an	integer	
maximum	flow
• Ford-Fulkerson	will	return	an	integer	maximum	flow

