Lecture 14:
• Network Flow: flows, cuts, duality
• Ford-Fulkerson

Mar 11, 2020
Flow Networks
Flow Networks

- Directed graph $G = (V, E)$
- Two special nodes: source s and sink t
- Edge capacities $c(e)$
Flows

- An **s-t flow** is a function $f(e)$ such that
 - For every $e \in E$, $0 \leq f(e) \leq c(e)$ (capacity)
 - For every $v \in E$, $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

- The value of a flow is $\text{val}(f) = \sum_{e \text{ out of } s} f(e)$
Maximum Flow Problem

- Given $G = (V, E, s, t, \{c(e)\})$, find an s-t flow of max. value

$$\text{val}(f) = 10 + 4 + 14 = 28$$
Cuts

- An **s-t cut** is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

- The **capacity** of a cut \((A, B)\) is \(\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)\).

\[
\begin{align*}
A &= \{s, 3, 4, 7\} & B &= \{1, 2, 5, 6, t\} \\
\text{cap}(A, B) &= 10 + 8 + 10 = 28
\end{align*}
\]
Minimum Cut problem

• Given $G = (V, E, s, t, \{c(e)\})$, find an s-t cut of min. capacity
Flows vs. Cuts

- **Fact:** If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \text{val}(f)$$

$9 + 1 + 8 + 14 - 4 = 28$

[Diagram showing a network flow graph with capacities and flows labeled.]
Weak MaxFlow-MinCut Duality

• For any s-t flow f and any s-t cut (A, B) $\text{val}(f) \leq \text{cap}(A, B)$

$$\text{val}(f) = \sum_{e \text{ from } A \rightarrow B} f(e) - \sum_{e \text{ from } B \rightarrow A} f(e)$$

$$\leq \sum_{e \text{ from } A \rightarrow B} f(e)$$ \hspace{1cm} (non-negativity)

$$\leq \sum_{e \text{ from } A \rightarrow B} c(e) = \text{cap}(A, B)$$ \hspace{1cm} (capacity)

• If f is a flow, (A, B) is a cut, and $\text{val}(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut
Augmenting Paths

- Given a network $G = (V, E, s, t, \{c(e)\})$ and a flow f, an **augmenting path** P is an $s \to t$ path such that $f(e) < c(e)$ for every edge $e \in P$.

Adding flow uniformly on an augmenting path gives a new valid s-t flow.
Greedy Max Flow

- Start with $f(e) = 0$ for all edges $e \in E$
- Find an **augmenting path** P *(Add as much as you can on the path.)*
- Repeat until you get stuck
Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?

The difference between the two flows is an "almost path" that uses $1 \rightarrow 2$ in reverse.

$\text{NBA diff btw two flows} = 10$

Greedy solution:

```
  s \rightarrow 1 \rightarrow 2 \rightarrow t
  30 \rightarrow 10 \rightarrow 20
```

Optimal solution:

```
  s \rightarrow 1 \rightarrow 2 \rightarrow t
  30 \rightarrow 10 \rightarrow 20
```

The difference between the two flows is:

```
  s \rightarrow 1 \rightarrow 2 \rightarrow t
  10 \rightarrow 0 \rightarrow -10
```

Greedy solution:

```
  s \rightarrow 1 \rightarrow 2 \rightarrow t
  10 \rightarrow 0 \rightarrow 20
```

Optimal solution:

```
  s \rightarrow 1 \rightarrow 2 \rightarrow t
  10 \rightarrow 0 \rightarrow 20
```
Residual Graphs

- Original edge: \(e = (u, v) \in E \)
 - Flow \(f(e) \), capacity \(c(e) \)

- Residual edge
 - Allows “undoing” flow
 - \(e = (u, v) \) and \(e^R = (v, u) \).
 - Residual capacity

- Residual graph \(G_f = (V, E_f) \)
 - Edges with positive residual capacity.
 - \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : c(e) > 0 \} \).
Augmenting Paths in Residual Graphs

- Let G_f be a residual graph
- Let P be an augmenting path in the residual graph
- Fact: $f' = \text{Augment}(G_f, P)$ is a valid flow

```
Augment(G_f, P)

b ← the minimum capacity of an edge in P
for e ∈ P
  if e ∈ E:  f(e) ← f(e) + b
  else:      f(e) ← f(e) - b
return f
```
Ford-Fulkerson Algorithm

- Start with $f(e) = 0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck
Ford-Fulkerson Algorithm

\[\text{FordFulkerson}(G,s,t,\{c(e)\})\]
\[\text{for } e \in E: f(e) \leftarrow 0\]
\(G_f\) is the residual graph
\[G\]
\[\text{while } (\text{there is an } s-t \text{ path } P \text{ in } G_f)\]
\[f \leftarrow \text{Augment}(G_f,P) \quad \| \text{O(m+n)} \| \text{ to augment update } G_f \quad \| \text{O(m+n)} \| \text{ to update the residual graph}\]

\[\text{return } f\]

\[\text{Augment}(G_f, P)\]
\[b \leftarrow \text{the minimum capacity of an edge in } P\]
\[\text{for } e \in P\]
\[\text{if } e \in E: f(e) \leftarrow f(e) + b\]
\[\text{else: } f(e) \leftarrow f(e) - b\]
\[\text{return } f\]
Ford-Fulkerson Demo

G:

![Graph Diagram]

Nodes and edges with capacities and/or flows marked.
Ford-Fulkerson Demo

$G:$

$G_f:$
Ford-Fulkerson Demo

$G:$

G_f:

[Diagram of a graph with nodes and edges labeled with capacities, showing a flow network with an augmenting path found by the Ford-Fulkerson algorithm.]
Ford-Fulkerson Demo

\[A = \{s, 3\} \]
\[\text{cap}(A, B) = 19 \]

\(G: \)

\[G_f: \]
What do we want to prove?
Running Time of Ford-Fulkerson

• For **integer capacities**, \(\leq \text{val}(f^*) \) augmentation steps

• Can perform each augmentation step in \(O(m) \) time
 • find augmenting path in \(O(m) \)
 • augment the flow along path in \(O(n) \)
 • update the residual graph along the path in \(O(n) \)

• For integer capacities, FF runs in \(O(m \cdot \text{val}(f^*)) \) time
 • \(O(mn) \) time if all capacities are \(c_e = 1 \)
 • \(O(mnC_{\text{max}}) \) time for any integer capacities \(\leq C_{\text{max}} \)
 • Problematic when capacities are large—more on this later!
Correctness of Ford-Fulkerson

- **Theorem:** f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f

- **Strong MaxFlow-MinCut Duality:** The value of the max s-t flow equals the capacity of the min s-t cut

- We’ll prove that the following are equivalent for all f
 1. There exists a cut (A, B) such that $val(f) = cap(A, B)$
 2. Flow f is a maximum flow
 3. There is no augmenting path in G_f
Optimality of Ford-Fulkerson

• **Theorem:** the following are equivalent for all f
 1. There exists a cut (A, B) such that $val(f) = cap(A, B)$
 2. Flow f is a maximum flow
 3. There is no augmenting path in G_f
Optimality of Ford-Fulkerson

• (3 → 1) If there is no augmenting path in G_f, then there is a cut (A, B) such that $val(f) = cap(A, B)$
 • Let A be the set of nodes reachable from s in G_f
 • Let B be all other nodes

 • Note $s \in A$ and $t \in B$ because there is no augmenting path
Optimality of Ford-Fulkerson

- \((3 \rightarrow 1)\) If there is no augmenting path in \(G_f\), then there is a cut \((A, B)\) such that \(val(f) = cap(A, B)\)
 - Let \(A\) be the set of nodes reachable from \(s\) in \(G_f\)
 - Let \(B\) be all other nodes
 - **Key observation:** no edges in \(G_f\) go from \(A\) to \(B\)

\[
val(f) = \sum_{e : A \rightarrow B} f(e) - \sum_{e : B \rightarrow A} f(e)
\]

\[
= \sum_{e : A \rightarrow B} f(e) - \sum_{e : B \rightarrow A} f(e)
\]

\[
= \sum_{e : A \rightarrow B} c(e) = cap(A, B)
\]
Summary

• **The Ford-Fulkerson Algorithm solves maximum s-t flow**
 • Running time $O(m \cdot val(f^*))$ in networks with integer capacities

• **Strong MaxFlow-MinCut Duality: max flow = min cut**
 • The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 • If f^* is a maximum s-t flow, then the set of nodes reachable from s in G_{f^*} gives a minimum cut
 • Given a max-flow, can find a min-cut in time $O(n + m)$

Ford-Fulkerson wouldn't find this flow.
Ask the Audience

- Is this a maximum flow?

- Is there an integer maximum flow?

- Does every graph with integer capacities have an integer maximum flow?
Summary

• **The Ford-Fulkerson Algorithm solves maximum s-t flow**
 • Running time $O(m \cdot \text{val}(f^*))$ in networks with integer capacities

• **Strong MaxFlow-MinCut Duality: max flow = min cut**
 • The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 • If f^* is a maximum s-t flow, then the set of nodes reachable from s in G_{f^*} gives a minimum cut
 • Given a max-flow, can find a min-cut in time $O(n + m)$

• **Every graph with integer capacities has an integer maximum flow**
 • Ford-Fulkerson will return an integer maximum flow