Lecture 13:
• Minimum Spanning Trees

Mar 9, 2020
Midterm II

• In Class Wednesday March 25th
 • Working on a backup plan

• Exactly the same format/rules as Midterm I

• Topics: Graph Algorithms
 • Key definitions, properties
 • Representing graphs
 • DFS and topological sort
 • Shortest Paths: BFS, Dijkstra, Bellman-Ford
 • Minimum spanning trees
 • Network flow

} this week
Minimum Spanning Trees
Network Design

• **Build a cheap, well connected network**

• We are given

 • a set of **nodes** \(V = \{v_1, \ldots, v_n\} \)

 • a set of **potential edges** \(E \subseteq V \times V \)

• Want to build a network to connect these locations

 • Every \(v_i, v_j \) must be **well connected**

 • Must be as **cheap** as possible

• Many variants of network design

 • Recall the bus routes problem from HW2
Minimum Spanning Trees (MST)

• **Input:** a weighted graph \(G = (V, E, \{w_e\}) \)
 - Undirected, connected, weights may be negative
 - All edge weights are distinct (makes life simpler)

• **Output:** a minimum weight spanning tree \(T \)
 - A spanning tree of \(G \) is a subset of \(T \subseteq E \) of the edges such that \((V, T) \) forms a tree
 - Weight of a tree \(T \) is the sum of the edge weights \(\sum_{e \in T} w_e \)
 - We’ll use \(T^* \) to denote “the” minimum spanning tree

\[
\min_{\text{trees } T \subseteq E} \sum_{e \in T} w_e
\]
Minimum Spanning Trees (MST)

\[
3 + 5 + 6 + 7 + 8 + 9 + 15 = 53
\]
Minimum Spanning Trees (MST)
MST Algorithms

• There are at least four reasonable MST algorithms
 • Borůvka’s Algorithm: start with $T = \emptyset$, in each round add cheapest edge out of each connected component
 • Prim’s Algorithm: start with some s, at each step add cheapest edge that grows the connected component
 • Kruskal’s Algorithm: start with $T = \emptyset$, consider edges in ascending order, adding edges unless they create a cycle
 • Reverse-Kruskal: start with $T = E$, consider edges in descending order, deleting edges unless it disconnects
Cycles and Cuts

- **Cycle:** a set of edges \((v_1, v_2), (v_2, v_3), \ldots, (v_k, v_1)\)

- **Cut:** a partition of the nodes into \(S, \bar{S}\)

Cycle \(C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)\)

Cut \(S = \{4, 5, 8\}\)
Cutset \(= (5,6), (5,7), (3,4), (3,5), (7,8)\)
Cycles and Cuts

- **Fact:** a cycle and a cutset intersect in an even number of edges
Cycles and Cuts

• **Fact:** removing an edge from a cycle doesn’t disconnect any nodes
Properties of MSTs

• **Cut Property:** Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 • We call such an e a safe edge

• **Cycle Property:** Let C be a cycle. Let f be the maximum weight edge in C. Then the MST T^* does not contain f.
 • We call such an f a useless edge
Proof of Cut Property

- **Cut Property:** Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e.

Proof by contradiction:
Assume T^* is the MST and it doesn't contain e.

If we add e to T^* there must be a cycle C. C contains ≥ 2 edges crossing the cut $\subseteq e \subseteq f \subseteq 3$, $\omega(f) > \omega(e)$.

If we remove f from $T^* \cup e \cup 3$ the total cut is lower than T^*.

$T^* \cup e \cup 3 \setminus e \cup f \cup 3$ is still a tree.
Proof of Cycle Property

• **Cycle Property:** Let C be a cycle. Let f be the max weight edge in C. The MST T^* does not contain f.

Proof by Contradiction:
Assume T^* is the MST and contains f.

If we remove f, the graph $T^* \setminus \{f\}$ has two components S, \overline{S}. There is some edge $e \in C$ cut by S. $\text{wt}(e) < \text{wt}(f)$.

Thus $T^* \setminus \{f\} \cup \{e\}$ is a spanning tree with lower weight.
Ask the Audience

- Assume G has distinct edge weights
- **True/False?** If e is the edge with the smallest weight, then e is always in the MST T^*
- **True/False?** If f is the edge with the largest weight, then f is never in the MST T^*
The “Only” MST Algorithm

- **GenericMST:**
 - Let $T = \emptyset$
 - Repeat until T is connected:
 - Find one or more safe edges not in T
 - Add safe edges to T

- **Theorem:** **GenericMST** outputs an MST

Suppose T is not connected. Then it has multiple connected components.

One of the potential edges crossing the cut is a safe edge.
Borůvka’s Algorithm

• **Borůvka:**
 • Let $T = \emptyset$
 • Repeat until T is connected:
 • Let C_1, \ldots, C_k be the connected components of (V, T)
 • Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_k
 • Add e_1, \ldots, e_k to T

 \[\text{Will contain duplicates}\]

• **Correctness:** every edge we add is safe
Borůvka’s Algorithm

Label Connected Components

Graph with labeled connected components.
Borůvka’s Algorithm

Add Safe Edges
Borůvka’s Algorithm

Done!
Borůvka’s Algorithm (Running Time)

• **Borůvka**

 • Let $T = \emptyset$

 • Repeat until T is connected:

 • Let $C_1, ..., C_k$ be the connected components of (V, T)

 • Let $e_1, ..., e_k$ be the safe edge for the cuts $C_1, ..., C_m$

 • Add $e_1, ..., e_k$ to T

• **Running time**

 • How long to find safe edges?

 • How many times through the main loop?

 \[
 O(n+m) \]

BFS the graph to find components

Loop through edges keep track of

mn ut edge for each component
Borůvka’s Algorithm (Running Time)

FindSafeEdges(G, T):

find connected components C_1, \ldots, C_k \# using BFS/DFS
let $L[v]$ be the component of node v
Let $S[i]$ be the safe edge of C_i \# naturally ≠

for each edge (u, v) in E:
 If $L[u] \neq L[v]$:
 If $w(u, v) < w(S[L[u]])$:
 $S[L[u]] = (u, v)$
 If $w(u, v) < w(S[L[v]])$:
 $S[L[v]] = (u, v)$
Return $\{S[1], \ldots, S[k]\}$

May have duplicates
Borůvka’s Algorithm (Running Time)

- **Claim:** every iteration of the main loop halves the number of connected components.

- If the claim is true, then \(\# \text{of iterations} \leq \lceil \log_2(n) \rceil \)

Every "new" component contains \(\geq 2 \) "old" (components)
Borůvka’s Algorithm (Running Time)

• **Borůvka**
 - Let $T = \emptyset$
 - Repeat until T is connected:
 - Let C_1, \ldots, C_k be the connected components of (V, T)
 - Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_m
 - Add e_1, \ldots, e_k to T

• **Running Time:**
 - How long to find safe edges? $O(n+m)$ per iteration
 - How many times through the main loop? $O(\log(n))$

Time: $O(m \log(n))$
Prim’s Algorithm

• **Prim Informal**
 - Let $T = \emptyset$
 - Let s be some arbitrary node and $S = \{s\}$
 - Repeat until $S = V$
 - Find the cheapest edge $e = (u, v)$ cut by S. Add e to T and add v to S

• **Correctness:** every edge we add is safe
Prim’s Algorithm

[Diagrams of Prim’s Algorithm steps]
Prim’s Algorithm

Prim(G=(V,E))

let Q be a priority queue storing V

value[v] ← ∞, last[v] ← ⊥

value[s] ← 0 for some arbitrary s

while (Q ≠ ∅):
 u ← ExtractMin(Q) ← n ExtractMin

for each edge (u,v) in E:
 if v ∈ Q and w(u,v) < value[v]:
 DecreaseKey(v,w(u,v)) ← m Decrease Key
 last[v] ← u

T = {(1,last[1]),…,(n,last[n])} (excluding s)
return T

Time: O((n+m) log (n))
 = O(m log (n))
Kruskal’s Algorithm

• **Kruskal’s Informal**
 • Let $T = \emptyset$
 • For each edge e in ascending order of weight:
 • If adding e would decrease the number of connected components add e to T

• **Correctness**: every edge we add is safe
Kruskal’s Algorithm
Implementing Kruskal’s Algorithm

• **Union-Find**: group items into components so that we can efficiently perform two operations:
 • **Find(u)**: lookup which component contains u
 • **Union(u,v)**: merge connected components of u,v

• Can implement **Union-Find** so that
 • Find takes $O(1)$ time
 • Any k Union operations takes $O(k \log k)$ time
Kruskal’s Algorithm (Running Time)

• **Kruskal’s Informal**
 • Let $T = \emptyset$
 • For each edge e in ascending order of weight:
 • If adding e would decrease the number of connected components add e to T

• Time to sort:
• Time to test edges:
• Time to add edges:
Comparison

• Can compute MST in time $O(m \log m)$

• **Boruvka’s Algorithm:**
 • Only algorithm worth implementing
 • Low overhead, can be easily parallelized
 • Each iteration takes $O(m)$, very few iterations in practice

• **Prim’s/Kruskal’s Algorithms:**
 • Reveal useful structure of MSTs
 • Templates for other algorithms