CS3000: Algorithms & Data
Jonathan Ullman

Lecture 13:
Minimum Spanning Trees

Mar 9, 2020

Midterm Il

* In Class Wednesday March 25t
* Working on a backup plan

 Exactly the same format/rules as Midterm |

* Topics: Graph Algorithms
* Key definitions, properties
* Representing graphs

DFS and topological sort

Shortest Paths: BFS, Dijkstra, Bellman-Ford

Minimum spanning trees

Network flow

} this week

Minimum Spanning Trees

Network Design

* Build a cheap, well connected network

* We are given
* asetof nodesV = {vq, ..., v,}
* aset of potential edges E € VXV

* Want to build a network to connect these locations
* Every v;, v; must be well connected
* Must be as cheap as possible

* Many variants of network design
* Recall the bus routes problem from HW?2

Minimum Spanning Trees (MST)

noda s ga%us*ra\ ed ges

* Input: a weighted graph ¢ = @@)/\7> s

* Undirected, connected, weights may be negative
» All edge weights are distinct (makes life simpler

Connec{'a& (—

and acyclm
end has n—ledjnsl\

* Output: a minimum weight spanning tree T'< £
e Aspanning tree of G is a subset of T € E of the edges
such that (V,T) forms a tree
* Weight of a tree T is the sum of the edge weights Q%T De

* We'll use o denote “the” minimum spanning tree

Minimum Spanning Trees (MST)

2+ S+ b+ F+ I+ q+S

Minimum Spanning Trees (MST)

MST Algorithms

* There are at least four reasonable MST algorithms

* Borlvka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Reverse-Kruskal: start with T = E, consider edges in
descending order, deleting edges unless it disconnects

Cycles and Cuts

* Cycle: a set of edges (v, v,), (vy,V3), ..., (Vy, V1)

Cut S
Cutset

{4, 5, 8}
(5,6), (5,7), (3,4), (3,5), (7,8)

Cycles and Cuts

* Fact: a cycle and a cutset intersect in an even
number of edges

Cycles and Cuts

* Fact: removing an edge from a cycle doesn’t
disconnect any nodes

s
A

Properties of MSTs

* Cut Property: Let S be a cut. Lete e the minimum
weight edge cut by S. Then the MST T™ contains e

* We call such an e a safe edge

* Cycle Property: Let C be a cycle. Let f be the
maximum weight edge in C. Then the MST T"* does
not contain f.

\
* We call such an f a useless edge \ /’—o\3
SN o
@~

!
~o
Lz, °
¢ ~

——

Proof of Cut Property

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

femove
?moQ \.?u\ cortrad hon / %Z

Assune T s the MST cnd

X doesn4 Contamn €

£ e odd o 4o T e mct _
be a oaebe C . C_gwﬂfow\; > edgof
qos&ma +L¢ (—U'\ ?e_,P"SJ LJ(":\>U(Q\S

\f ve remove _?an —Vu?a’) Yo Hle dokal o s lok;&r ‘ILLM/) T&

T*u%cﬂﬁ\ LU & skl a e n

Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

(qug\—\ \;u\ Contrad <ton®

Assume T« e MST and S

WI\‘f'O‘N\g -1\/

H? we fenove (’) —H,.L rap\n T\Sﬂ

has teo wmronen—('s gJS. There 73 Sore
edg,e_ QC—Q et ba S L.)‘(’,(QB < ot C‘P\

The T 003 5 asponngobee ol by gkt o

Ask the Audience

* Assume G has distinct edge weights

* True/False? If e is the edge with the smallest
weight, then e is always in the MST T

* True/False? If f is the edge with the largest
weight, then f is never in the MST T*

The “Only” MST Algorithm

* GenericMST:
s letT =0
* Repeat until T is connected:
* Find one or more safe edges notin T
 Add safe edgesto T

* Theorem: GenericMST outputs an MST
Sup(;ose T s nst CON\GC‘U-&, TLU\ 1 has Mu\—k‘p\x

Connected components. -
One b‘Y’ 'H\(()ckml’mlecoap;@:--_
amssm? He oA 6@ safe eaog,c R

Boruvka’s Algorithm ; {\

* Boruivka:
o letT =0
* Repeat until T is connected:
* Let Cq, ..., C be the connected components of (V,T)

e L be the safe edge for the cuts Cj, ..., &4,
/{jd ey, .,eptoT

\\)',\\ Contarn olu(\rca-l—es

* Correctness: every edge we add is safe

Boruvka’s A|g0rithm Label Connected Components

Boruvka’s Algorithm Add Safe Edges

Boruvka’s A|g0rithm Label Connected Components

Boruvka’s Algorithm Add Safe Edges

Boruvka’s Algorithm Done!

Boruvka’s Algorithm (Running Time)

* Boruvka
o letT =0
* Repeat until T is connected:
* Let Cq, ..., Cy be the connected components of (V,T) OCY\‘\' fVD

* Leteq, ..., e be the safe edge for the cuts Cy, ..., Gy,
* Add ey, ...,e toT

* Running time BES Pregrach 4 Lod componests
» How long to find safe edges? Loop +nrouh edges beep imek o

« How many times through the main loop? ot ¢d3 for
cach Gv/V\PQAbJIf’

Boruvka’s Algorithm (Running Time)

FindSafeEdges (G, T) :
find connected components C(Cjy,...,Cy //Us.\fj BPS /RS
let L[v] be the component of node v
Let S[i] be the safe edge of (; //]nrlm"a #
for each edge (u,v) in E:
If L[u] # L[v]:
If w(u,v) < w(S[L[ull]):
S[L[u]] = (u,v)
If w(u,v) < w(S[L[Vv]]):
S[L[v]] = (u,v)
Return {S[1l],..,S[k]}

~ ——

M'O‘.B \nAV’C O\u(\ﬂ-a“ud

Boruvka’s Algorithm (Running Time)

at \eaS‘f’

* Claim: every iteration of the main IoopAhaIves the
number of connected components.

’ “2 He clarm s -l—me Hhren #:O‘P terations éUfa 2(03'&

(

\

Ev{r:) ney " C-OMPbr\Q,\'»
Confams > b 9\ ola ™

Boruvka’s Algorithm (Running Time)

* Boruvka
o letT =0
* Repeat until T is connected:
* Let Cq, ..., Cy be the connected components of (V,T)

* Leteq, ..., e be the safe edge for the cuts Cy, ..., Gy,

* Add €1, .+, €k toT
(V) E\ s connected | so Mm> n-l

)) Nten & Gm+1-TUn)
* Running Time:

* How long to find safe edges? O(ntm) pos Tterodien
* How many times through the main loop? OC\og(a\

le O(m Oﬂ "\\

Prim’s Algorithm

* Prim Informal
e letT =0 S < Su‘fu%
* Let s be some arbitrary node and S = {s}

* Repeatuntil S =V

* Find the cheapest edge e = (u, v) cutby S. Add e to T and
addvto S

* Correctness: every edge we add is safe

Prim’s Algorithm

Prim’s Algorithm [ac - O(G*“’m"é\(“\\

. O(mlOQ (N
Prim(G=(V,E))

let Q be a priority queue storing V
value[v] <« oo, last[v] <1
value[s] < 0 for some arbitrary s
while (Q # Q) :
u <« ExtractMin(Q) < n Detmcf i
for each edge (u,v) in E:
if v € Q and w(u,v) < value|v]:
DecreaseKey (v, w(u,V))e— .. Deocase Kea,
last[v] <« u

T = {(1,1last[1]),..,(n,last[n])} (excluding s)
return T

Kruskal’s Algorithm

* Kruskal’s Informal
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddeto T

* Correctness: every edge we add is safe

Kruskal’s Algorithm

Implementing Kruskal’s Algorithm

* Union-Find: group items into components so that
we can efficiently perform two operations:

* Find(u): lookup which component contains u
* Union(u,v): merge connected components of u,v

* Can implement Union-Find so that
* Find takes O(1) time
* Any k Union operations takes O(k log k) time

Kruskal’s Algorithm (Running Time)

* Kruskal’s Informal
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddeto T

* Time to sort:
* Time to test edges:
* Time to add edges:

Comparison
« Can compute MST in time O(mlogm)

e Boruvka’s Algorithm:
* Only algorithm worth implementing
* Low overhead, can be easily parallelized
* Each iteration takes O(m), very few iterations in practice

* Prim’s/Kruskal’s Algorithms:
* Reveal useful structure of MSTs
* Templates for other algorithms

