# CS3000: Algorithms & Data Jonathan Ullman

#### Lecture 12:

Shortest Paths: Finish Dijkstra, Bellman-Ford

Feb 26, 2020

# Shortest Paths: Bellman-Ford

## Dijkstra Recap

- Input: Directed, weighted graph  $G = (V, E, \{\ell_e\})$ , source node s
  - Non-negative edge lengths  $\ell_e \geq 0$

- Output: Two arrays d, p
  - d(u) is the length of the shortest  $s \sim u$  path
  - p(u) is the final hop on shortest  $s \sim u$  path
- Running time:  $O(m \log n)$

### Ask the Audience

• Show that Dijkstra's Algorithm can fail in graphs with negative edge lengths

# Why Care About Negative Lengths?

- Models various phenomena
  - Transactions (credits and debits)
  - Currency exchange (log exchange rate can be + or -)
  - Chemical reactions (can be exo- or endo-thermic)
  - ...

- Leads to interesting algorithms
  - Variants of Bellman-Ford are used in internet routing

### **Bellman-Ford**

- Input: Directed, weighted graph  $G = (V, E, \{\ell_e\})$ , source node s
  - Possibly negative edge lengths  $\ell_e \in \mathbb{R}$
  - No negative-length cycles!

- Output: Two arrays d, p
  - d(u) is the length of the shortest  $s \sim u$  path
  - p(u) is the final hop on shortest  $s \sim u$  path

### Ask the Audience

- Why wont the following work?
  - Take a graph  $G = (V, E, \{\ell(e)\})$  with negative lengths
  - Add min  $\ell(e)$  to all lengths to make them non-negative
  - Run Dijkstra on the new graph

### Structure of Shortest Paths

• If  $(u,v) \in E$ , then  $d(s,v) \le d(s,u) + \ell(u,v)$  for every node  $s \in V$ 

• If  $(u, v) \in E$ , and  $d(s, v) = d(s, u) + \ell(u, v)$  then there is a shortest  $s \sim v$ -path ending with (u, v)

# **Dynamic Programming**

# **Dynamic Programming**

# **Dynamic Programming Take II**

#### Recurrence

- Subproblems: OPT(v, j) is the length of the shortest  $s \sim v$  path with at most j hops
- Case u: (u, v) is final edge on the shortest  $s \sim v$  path with at most j hops

#### **Recurrence:**

$$\mathrm{OPT}(v,j) = \min \left\{ \mathrm{OPT}(v,i-1), \min_{(u,v) \in E} \left\{ \mathrm{OPT}(u,i-1) + \ell_{u,v} \right\} \right\}$$

$$OPT(s, j) = 0$$
 for every  $j$   
 $OPT(v, 0) = \infty$  for every  $v$ 

### Finding the paths

- OPT(v, j) is the length of the shortest  $s \sim v$  path with at most j hops
- P(v,j) is the last hop on some shortest  $s \sim v$  path with at most j hops

#### **Recurrence:**

$$\mathrm{OPT}(v,j) = \min\left\{ \underbrace{\mathrm{OPT}(v,i-1), \min_{(u,v) \in E} \left\{ \underbrace{\mathrm{OPT}(u,i-1) + \ell_{u,v}} \right\} \right\}$$



|   | 0        | 1 | 2 | 3 | 4 |
|---|----------|---|---|---|---|
| S | 0        | 0 | 0 | 0 | 0 |
| b | $\infty$ |   |   |   |   |
| С | $\infty$ |   |   |   |   |
| d | $\infty$ |   |   |   |   |
| е | $\infty$ |   |   |   |   |



|   | 0        | 1        | 2 | 3 | 4 |
|---|----------|----------|---|---|---|
| S | 0        | 0        | 0 | 0 | 0 |
| b | $\infty$ | -1       |   |   |   |
| С | $\infty$ | 4        |   |   |   |
| d | $\infty$ | $\infty$ |   |   |   |
| е | $\infty$ | $\infty$ |   |   |   |



|   | 0        | 1        | 2  | 3 | 4 |
|---|----------|----------|----|---|---|
| S | 0        | 0        | 0  | 0 | 0 |
| b | $\infty$ | -1       | -1 |   |   |
| С | $\infty$ | 4        | 2  |   |   |
| d | $\infty$ | $\infty$ | 1  |   |   |
| е | $\infty$ | $\infty$ | 1  |   |   |



|   | 0        | 1        | 2  | 3  | 4 |
|---|----------|----------|----|----|---|
| S | 0        | 0        | 0  | 0  | 0 |
| b | $\infty$ | -1       | -1 | -1 |   |
| С | $\infty$ | 4        | 2  | 2  |   |
| d | $\infty$ | $\infty$ | 1  | -2 |   |
| е | $\infty$ | $\infty$ | 1  | 1  |   |



|   | 0        | 1        | 2  | 3  | 4  |
|---|----------|----------|----|----|----|
| S | 0        | 0        | 0  | 0  | 0  |
| b | $\infty$ | -1       | -1 | -1 | -1 |
| С | $\infty$ | 4        | 2  | 2  | 2  |
| d | $\infty$ | $\infty$ | 1  | -2 | -2 |
| е | $\infty$ | $\infty$ | 1  | 1  | 1  |

## Implementation (Bottom Up)

```
Shortest-Path(G, s)
    foreach node v \in V
        M[0,v] \leftarrow \infty
       P[0,v] \leftarrow \phi
    M[0,s] \leftarrow 0
    for i = 1 to n-1
        foreach node v \in V
          M[i,v] \leftarrow M[i-1,v]
          P[i,v] \leftarrow P[i-1,v]
          foreach edge (v, w) \in E
               if (M[i-1,w] + \ell_{wv} < M[i,v])
                    M[i,v] \leftarrow M[i-1,w] + \ell_{wv}
                    P[i,v] \leftarrow w
```

### **Optimizations**

- One array d[v] containing shortest path found so far
- No need to check edges (u, v) unless d[u] has changed
- Stop if no d[v] has changed for a full pass through V

#### Theorem:

- Throughout the algorithm M[v] is the length of some s-v path
- After i passes through the nodes,  $M[v] \leq OPT(v,i)$

# Implementation II

```
Efficient-Shortest-Path(G, s)
    foreach node v \in V
       M[v] \leftarrow \infty
       P[v] \leftarrow \phi
   M[s] \leftarrow 0
    for i = 1 to n-1
       foreach node w \in V
          if (M[w] changed in the last iteration)
              foreach edge (w,v) \in E
              if (M[w] + \ell_{wv} < M[v])
                  M[v] \leftarrow M[w] + \ell_{wv}
                   P[v] \leftarrow w
          if (no M[w] changed): return M
```

### Negative Cycle Detection

- Claim 1: if OPT(v, n) = OPT(v, n 1) then there are no negative cycles reachable from s
- Claim 2: if OPT(v,n) < OPT(v,n-1) then any shortest s-v path contains a negative cycle

### **Negative Cycle Detection**

#### Algorithm:

- Pick a node  $a \in V$
- Run Bellman-Ford for *n* iterations
- Check if  $OPT(v, n) \neq OPT(v, n 1)$  for some  $v \in V$ 
  - If no, then there are no negative cycles
  - If yes, the shortest a-v path contains a negative cycle



### **Negative Cycle Detection**

#### Algorithm:

- Add a new node  $s \in V$ , add edges (s, v) for every  $v \in V$
- Run Bellman-Ford for n iterations
- Check if  $OPT(v, n) \neq OPT(v, n 1)$  for some  $v \in V$ 
  - If no, then there are no negative cycles
  - If yes, the shortest s v path contains a negative cycle



# **Shortest Paths Summary**

- Input:
- Informal Version:
  - Maintain a set S of explored nodes
  - Maintain an upper bound on distance
    - If u is explored, then we know d(u) (Key Invariant)
    - If u is explored, and (u, v) is an edge, then we know  $d(v) \le d(u) + \ell(u, v)$
  - Explore the "closest" unexplored node
  - Repeat until we're done

## **Shortest Paths Summary**

- Input: Directed, weighted graph  $G = (V, E, \{\ell_e\})$ , source node s
- Output: Two arrays d, p
  - d(u) is the length of the shortest  $s \sim u$  path
  - p(u) is the final hop on shortest  $s \sim u$  path
- Non-negative lengths ( $\ell_e \ge 0$ ): Dijkstra's Algorithm can solve in  $O(m \log n)$  time
- Negative lengths: Bellman-Ford solves in O(nm) time, or finds a negative-length cycle