CS3000: Algorithms & Data
Jonathan Ullman

Lecture 12:
e Shortest Paths: Finish Dijkstra, Bellman-Ford

Feb 26, 2020



Shortest Paths:
Bellman-Ford



Dijkstra Recap

* Input: Directed, weighted graph ¢ = (V,E, {£,}),
source node s
* Non-negative edge lengths /., = 0

* Qutput: Two arrays d, p
* d(u) is the length of the shortest s ~» u path
* p(u) is the final hop on shortest s ~» u path

* Running time: O(mlogn)



Ask the Audience

* Show that Dijkstra’s Algorithm can fail in graphs
with negative edge lengths



Why Care About Negative Lengths?

* Models various phenomena
* Transactions (credits and debits)
* Currency exchange (log exchange rate can be + or -)
e Chemical reactions (can be exo- or endo-thermic)

* Leads to interesting algorithms
* Variants of Bellman-Ford are used in internet routing



Bellman-Ford

* Input: Directed, weighted graph ¢ = (V,E, {£,}),
source node s
* Possibly negative edge lengths 7, € R
* No negative-length cycles!

* Output: Two arrays d, p
* d(u) is the length of the shortest s ~» u path
* p(u) is the final hop on shortest s ~ u path



Ask the Audience

* Why wont the following work?
* Take agraph G = (V, E,{f(e)}) with negative lengths
* Add min £(e) to all lengths to make them non-negative
* Run Dijkstra on the new graph



Structure of Shortest Paths

* If (u,v) € E,thend(s,v) < d(s,u) + £(u,v) for
everynodes € V

e If (u,v) € E,andd(s,v) =d(s,u) + £(u,v) then
there is a shortest s ~» v-path ending with (u, v)



Dynamic Programming



Dynamic Programming



Dynamic Programming Take Il



Recurrence

* Subproblems: OPT (v, j) is the length of the shortest s ~ v
path with at most j hops

* Case u: (u,v) is final edge on the shortest s ~ v path with
at most j hops

Recurrence:

OPT(v,j) = min {OPT(v i—1), ml)relE{OPT(u,i - 1)+ Bu’v}}

OPT(s,j) = 0 for every j
OPT(v,0) = oo for every v



Finding the paths

* OPT(v,j) is the length of the shortest s ~ v path with at
most j hops

e P(v,j) is the last hop on some shortest s ~ v path with at
most j hops

Recurrence:

OPT(v,j) = min {OPT(U i—1), ml)relE{OPT(u,i - 1)+ fu,,,}}



Example




Example




Example




Example




Example




Implementation (Bottom Up)

Shortest-Path (G, s)
foreach node v € V
M[O,v] « ©
P[O,v] « ¢
M[O,s] «< O

for i =1 to n-1
foreach node v € V
M[i,v] <« M[i-1,vVv]
P[i,v] « P[i-1,v]
foreach edge (v, w) € E
if (M[i-1,w] + ¢, < M[i,v])
M[i,v] « M[i-1,w] + ¢,
P[i,v] <« w



Optimizations

* One array d|v] containing shortest path found so far
* No need to check edges (u, v) unless d[u] has changed

* Stop if no d[v] has changed for a full pass through V

* Theorem:
* Throughout the algorithm M|[v] is the length of some s — v path
 After i passes through the nodes, M[v] < OPT (v, i)



Implementation |

Efficient-Shortest-Path (G, s)
foreach node v € V
M[v] <« o
P[v] « ¢
M[s] «< O

for i =1 to n-1
foreach node w € V
if (M[w] changed in the last iteration)
foreach edge (w,v) € E
if (M[w] + £, < M[v])
M[v] <« M[w] + £
Pl[v] « w
if (no M[w] changed): return M



Negative Cycle Detection

e Claim 1: if OPT(v,n) = OPT(v,n — 1) then there are no
negative cycles reachable from s

e Claim 2:if OPT(v,n) < OPT(v,n — 1) then any shortest
s — v path contains a negative cycle



Negative Cycle Detection

* Algorithm:
* Pickanodea eV
* Run Bellman-Ford for n iterations
e Checkif OPT(v,n) + OPT(v,n — 1) forsomev €V
* If no, then there are no negative cycles
* If yes, the shortest a — v path contains a negative cycle




Negative Cycle Detection

* Algorithm:
 Add a new node s € V/, add edges (s, v) foreveryv € VV
* Run Bellman-Ford for n iterations
e Checkif OPT(v,n) + OPT(v,n — 1) forsomev €V
* If no, then there are no negative cycles
* If yes, the shortest s — v path contains a negative cycle




Shortest Paths Summary

* Input:

* Informal Version:
 Maintain a set S of explored nodes
* Maintain an upper bound on distance
* If uis explored, then we know d(u) (Key Invariant)

* If uis explored, and (u, v) is an edge, then we know
dlv) < d(u) + ¢(u,v)

* Explore the “closest” unexplored node
* Repeat until we’re done



Shortest Paths Summary

* Input: Directed, weighted graph ¢ = (V,E, {£,}),
source node s

* Output: Two arrays d, p
* d(u) is the length of the shortest s ~» u path
* p(u) is the final hop on shortest s ~ u path

* Non-negative lengths (£, = 0): Dijkstra’s Algorithm
can solve in O(mlogn) time

* Negative lengths: Bellman-Ford solves in O(nm)
time, or finds a negative-length cycle



