Lecture 11:
• Shortest Paths: BFS, Start Dijkstra

Feb 24, 2020
Shortest Paths: Breadth-First Search
Exploring a Graph

- **Problem:** Is there a path from s to t?
- **Idea:** Explore all nodes reachable from s.

- Two different search techniques:
 - **Depth-First Search:** follow a path until you get stuck, then go back
 - **Breadth-First Search:** explore all nearby nodes before moving on to farther away nodes
 - Finds the shortest path from s to t!
Breadth-First Search (BFS)

- **Informal Description**: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...

- BFS Tree:
 - $L_0 = \{s\}$
 - $L_1 = \text{all neighbors of } L_0$
 - $L_2 = \text{all neighbors of } L_1 \text{ that are not in } L_0, L_1$
 - $L_3 = \text{all neighbors of } L_2 \text{ that are not in } L_0, L_1, L_2$
 - ...
 - $L_d = \text{all neighbors of } L_{d-1} \text{ that are not in } L_0, \ldots, L_{d-1}$
 - Stop when L_{d+1} is empty
Example

- BFS this graph from $s = 1$

- Red edges are "tree edges"
- Red edges give paths from s to t
- Blue edges are either $L_i \leftrightarrow L_i$ or $L_i \leftrightarrow L_{i+1}$
Breadth-First Search Implementation

BFS(G = (V,E), s):

Let explored[v] ← false ∀v, explored[s] ← true
Let layer[v] ← ∞ ∀v, layer[s] ← 0
Let parent[v] ← ⊥ ∀v
Let i ← 0, L₀ = {s}, T ← ∅

While (Lᵢ is not empty):
 Initialize new layer Lᵢ₊₁
 For (u in Lᵢ):
 For ((u,v) in E):
 If (explored[v] = false):
 explored[v] ← true,
 layer[v] ← i+1
 parent[v] ← u (Add (u,v) to T)
 Add v to Lᵢ₊₁
 i ← i+1
BFS Running Time (Adjacency List)

BFS(G = (V,E), s):
Let explored[v] ← false ∀v, explored[s] ← true
Let layer[v] ← ∞ ∀v, layer[s] ← 0
Let parent[v] ← ⊥ ∀v
Let i ← 0, L₀ = {s}, T ← ∅

While (Lᵢ is not empty):
 Initialize new layer Lᵢ₊₁
 For (u in Lᵢ):
 For ((u,v) in E):
 If (explored[v] = false):
 explored[v] ← true,
 layer[v] ← i+1
 parent[v] ← u
 Add v to Lᵢ₊₁
 i ← i+1

O(n)
Shortest Paths via BFS

- **Definition:** the distance between \(s, t \) is the number of edges on the shortest path from \(s \) to \(t \).
- **Thm:** BFS finds distances from \(s \) to other nodes.
 - \(L_i \) contains all nodes at distance \(i \) from \(s \).
Shortest Paths via BFS

- **Definition:** the distance between \(s, t \) is the number of edges on the shortest path from \(s \) to \(t \)
- **Thm:** BFS finds distances from \(s \) to other nodes
 - \(L_i \) contains all nodes at distance \(i \) from \(s \)

Base Cases:
- \(L_0 \) is obvious
- \(L_1 \) is obvious (\(L_1 \) contains all neighbors of \(s \))

Induction: If true for \(L_0, L_1, \ldots, L_i \), then true for \(L_{i+1} \)

Suppose \(u \) is such that \(d(s, u) = i + 1 \)

\[
\begin{array}{c}
\text{\(\circ \) } \\
\text{\(S \) } \xrightarrow{i \text{ hops}} \text{\(\square \) } \xrightarrow{} \text{\(u \) }
\end{array}
\]

By induction, \(v \) is in \(L_i \). Therefore \(u \) is in \(L_{i+1} \).
Shortest Paths via BFS

- **Definition:** the distance between s, t is the number of edges on the shortest path from s to t.
- **Thm:** BFS finds distances from s to other nodes and the tree edges give the shortest s to t path.
 - Can find distances and shortest path tree in time $O(n + m)$... then can find a shortest path in time $O(n)$.

Tree edges give shortest paths.
Shortest Paths via BFS

• **Definition:** the distance between s, t is the number of edges on the shortest path from s to t

• **Thm:** BFS finds distances from s to other nodes and the tree edges give the shortest s to t path
 - Can find distances and shortest path tree in time $O(n + m)$... then can find a shortest path in time $O(n)$
Shortest Paths:
Dijkstra
Navigation
Weighted Graphs

• **Definition:** A weighted graph \(G = (V, E, \{w(e)\}) \)
 - \(V \) is the set of vertices
 - \(E \subseteq V \times V \) is the set of edges
 - \(w_e \in \mathbb{R} \) are edge weights/lengths/capacities
 - Can be directed or undirected

• **Today:**
 - Directed graphs (one-way streets)
 - Strongly connected (there is always some path)
 - Non-negative edge lengths (\(\ell(e) \geq 0 \))
Shortest Paths

• The length of a path $P = v_1 - v_2 - \cdots - v_k$ is the sum of the edge lengths:

$$l(P) = \sum_{e \in P} l(e)$$

• The distance $d(s, t)$ is the length of the shortest path from s to t

• **Shortest Path**: given nodes $s, t \in V$, find the shortest path from s to t

• **Single-Source Shortest Paths**: given a node $s \in V$, find the shortest paths from s to every $t \in V$
Structure of Shortest Paths

- If \((u, v) \in E\), then \(d(s, v) \leq d(s, u) + \ell(u, v)\) for every node \(s \in V\)

- If \((u, v) \in E\), and \(d(s, v) = d(s, u) + \ell(u, v)\) then there is a shortest \(s \rightsquigarrow v\)-path ending with \((u, v)\)
Dijkstra's Algorithm

- Maintain an upper bound on \(d(s, t) \) \(\forall t \)

 \[
 d[s] = 0 \quad d[t] = \infty \text{ for } t \neq s
 \]

- Explore neighbors of \(s \)

- Find another node [with the smallest \(d[u] \) of all unexplored nodes]

 Explore neighbors of that node

- Repeat until all nodes are explored
Dijkstra’s Algorithm: Demo
Dijkstra’s Algorithm: Demo

Initialize

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_0(u)$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$S = \{\}$

Set of explored nodes
Dijkstra’s Algorithm: Demo

Explore A

\[S = \{A\} \]
Dijkstra’s Algorithm: Demo

Explore C

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_0(u)$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d_1(u)$</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d_2(u)$</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

$S = \{A, C\}$
Dijkstra’s Algorithm: Demo

Explore E

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_0(u)$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d_1(u)$</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d_2(u)$</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>$d_3(u)$</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

$S = \{A, C, E\}$
Dijkstra’s Algorithm: Demo

Explore B

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_0(u)$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d_1(u)$</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d_2(u)$</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>$d_3(u)$</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>$d_4(u)$</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

$S = \{A, C, E, B\}$
Dijkstra’s Algorithm: Demo

Don’t need to explore D

\[S = \{A, C, E, B, D\} \]
Maintain parent pointers so we can find the shortest paths
Correctness of Dijkstra

- **Warmup 0:** initially, $d_0(s)$ is the correct distance

- **Warmup 1:** after exploring the first node v, $d_1(v)$ is the correct distance

 If (s,v) is the shortest edge starting at s. Then $d(s,v) = \ell(s,v)$

 Any other $s \rightarrow v$ path has length $> S$, so it is not a shorter path
Correctness of Dijkstra

- **Invariant**: after we explore the i-th node, $d_i(v)$ is correct for every $v \in S$

- We just argued the invariant holds after we’ve explored the 1st and 2nd nodes
Correctness of Dijkstra

- **Invariant**: after we explore the i-th node, \(d_i(v) \) is correct for every \(v \in S \)

- **Proof**:

 Want to show that \(d_i(v) = d_i(u) + l(u,v) \) is the shortest path

\[
\begin{align*}
l(P') &= l(P_s, x) + l(x \rightarrow y) + l(P_y, v) \\
&\geq l(P_s, x) + l(x \rightarrow y) \\
&\geq d_i(x) + l(x \rightarrow y) \\
&\geq d_i(y) \\
&\geq d_i(v) \\
&= l(P)
\end{align*}
\]

\([l(e) > 0] \)
\([x \text{ is explored}] \)
\([x \text{ is explored}] \)
\([\text{I chose } v, \text{ not } y] \)
Implementing Dijkstra

\[\text{Dijkstra}(G = (V,E,\{\ell(e)\}, s)) : \]
\[d[s] \leftarrow 0, \ d[u] \leftarrow \infty \text{ for every } u \neq s \]
\[\text{parent}[u] \leftarrow \perp \text{ for every } u \]
\[Q \leftarrow V \quad // Q \text{ holds the unexplored nodes} \]

\text{While (Q is not empty)}:
\[u \leftarrow \text{argmin}_{w \in Q} d[w] \quad // \text{Find closest unexplored} \]
\[\text{Remove } u \text{ from } Q \]

\[// \text{Update the neighbors of } u \]
\[\text{For } ((u,v) \text{ in } E) : \]
\[\text{If } (d[v] > d[u] + \ell(u,v)) : \]
\[d[v] \leftarrow d[u] + \ell(u,v) \]
\[\text{parent}[v] \leftarrow u \]

\text{Return } (d, \text{parent})
Implementing Dijkstra (Naïvely)

1. Need to explore all n nodes
2. Each exploration requires:
 2a. Finding the unexplored node u with smallest distance
 2b. Updating the distance for each neighbor of u

\[
\sum_{u \in V} O(n + \deg(u) + 1) = O(n^2 + m)
\]