CS3000: Algorithms & Data
Jonathan Ullman

Lecture 10:

 Graphs

 Graph Traversals: DFS
 Topological Sort

Feb 19, 2020

Midterm 1

< & AJA-
C /o~ B /3 /B
MTT
Pvvage I
Sore’ ¥ 78 —
]
HUL ch/ﬁ?ﬁ [1]
o ~ 57]
S] I
I L
] —]
L] I]
] I I
— [— I —
] I I
] I N
I I I

Z
2
%

o &

%
%

%
%

o e® o P e

What’s Next

The Structure of Romantic and Sexual Relations at "JefTerson High School”

2o
q \:':_’.—
LY b & P
.x;i UE 100y, /
. S
- ‘_"Q’ “(.. ‘_'-o" $ ‘J ,3‘.‘.¢'. o \"
' i e Dot — B
Tt A o T /\
T4 soals é-f
2 KLY 4
v Y w‘.,._;".:o >

\ \ 63
o E o— — ® Male

Female

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview., Numbers under the figure count the number of times that pattern was observed (1.¢. we found 63
pairs unconnected to anyone ¢lse)

What’'s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

* Dijkstra

* Bellman-Ford (DynamicProgramming)
Minimum Spanning Trees:

* Boruvka, Prim, Kruskal
Network Flow:

* Algorithms
e Reductionsto Network Flow

Graphs

= I\/) #o? nooes

m= JEL 2ot 84323
d“g% (D)= & nc:a\n\ooﬂ
* Definition: A directed graph ¢ = (V/, E)

* I/ is the set of nodes/vertices

[€ VXV is the set of edges

* An edgeisan orderede = (u,v) “from u to v”

* Definition: An undirected graph ¢ = (V, E)

* Edges are unorderede = (u, v) “between 1 and v”

Graphs: Key Definitions

(O O O
* Simple Graph: @‘G
* No duplicate edges "

* No self-loopse = (u,u) (4)

Adjacency Matrices

* The adjacency matrix of a graph G = (V,E) with n
nodes is the matrix A[1:n, 1:n] where

E“ﬂﬂ“
. W o 1 1 o
Ali, /] = 1 (i,j) €E o o0 1 o
’ 0 (i,j) €E "o o o0 o
o o 1 o0

gs—ie: V) Q,a

Lookup: ©(1) time

List Neighbors: (V) time a °

Adjacency Lists (Undirected)

* The adjacency list of a vertexv € V is the list A[v]
ofallust. (v,u) € E

Al1] = {2,3}
Al2] ={1,3}
Al3] =1{1,2,4}
Al4] = {3}

G’G

Adjacency Lists (Directed)

* The adjacency list of a vertex v € IV are the lists
e A, [v]ofallust (v,u) EE
e A [v]ofallust. (u,v) EE
Spoatce & O(n+m)
L st Ne:a\'\\?ors ofF Node w: OC deca(w\ 1)
Loskop Edga () 1 O(deg(wd 1)

Aouel1] = 23} Apll] = (3
Aoutl21 = 3} Apl2] = (1) @,ﬁ
Apuel41 = (3} A[4] = {3 ()

Depth-First Search (DFS)

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Vu

DF'S (u) :
explored[u] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

I e

N

> kg

(Re-d ewrouS N O FC/—{—\q
‘QOV\ w to Teaeh stw vnede

Kunawm T.*\e . O(n,—l' mw
) J

(‘\n e 3(0:(\« reachalde ‘me u}

Depth-First Search

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u, a), (u, b), (b,c) M
* These arethe edges that explore new nodes

* Forwardedges: (u,c) 4W

* Ancestorto descendant

» Backward edges: (a,u) 4%

* Descendanttoancestor ° a
* Impliesa directed cycle!

* Crossedges: (b,a) g

* No ancestral relation

MANBE WE CAN ENENTUALN MAKE
R VERRING WEIRDS LANGUAGE A COMPLETE (MPEDIMENT
Ask the Audience i

* DFS starting from node a

e Search in alphabetical order
* Label edges with
{tree,forward,backward,cross}

Connected Components

Paths/Connectivity

* A path is a sequence of consecutive edges in E
*P=u—w; —w, —w3 —-—Wp_1—7V
* The length of the path is the # of edges

* An undirected graph is connected if for every two
vertices u,v € V, there is a path fromu to v

* A directed graph is strongly connected if for every
two vertices u,v € V, there are paths fromu to v
and fromvtou

Connected Components (Undirected)

* Problem: Given an undirected graph G, split it into
connected components

* Input: Undirected graph G = (V, E)

* Output: A labeling of the vertices by their
connected component

Connected Components (Undirected)

* Algorithm:
* Picka nodev
e Use DFS to find all nodes reachable from v
* Labels those as one connected component
* Repeat untilall nodes are in some component

Connected Components (Undirected)

CC(G = (V,E)):
// Initialize an empty array and a counter
let comp[l:n] «1, ¢ « 1

// Iterate through nodes
for (u=1,.,n):
// Ignore this node if it already has a comp.
// Otherwise, explore it using DFS
if (comp[u] != 1):
run DFS (G, u)
let comp[v] «< ¢ for every v found by DFS
let c <« c + 1

output comp[l:n]

Running Time

Connected Components (Undirected)

* Problem: Given an undirected graph G, split it into
connected components

* Algorithm: Can split a graph into conneted
componentsin time O(n 4+ m) using DFS

* Punchline: Usually assume graphs are connected

* Implicitlyassume that we have already broken the graph
into CCsin O(n + m) time

Strong Components (Directed)

* Problem: Given a directed graph G, split it into
strongly connected components

* Input: Directed graph G = (V, E)

* Output: A labeling of the vertices by their strongly
connected component

Strong Components (Directed)

* Observation: SCC(s) is all nodes v € V such that v
is reachable from s and vice versa

* Can find all nodesreachable from s using BFS
* How do we find all nodes that can reach s?

Strong Components (Directed)

SCC(G = (V,E)):
let GR be G with all edges “reversed”

// Initialize an array and counter
let comp[l:n] <1, c « 1

for (u=1,.,n):

// If u has not been explored

if (comp[u] !'= 1):
let S be the nodes found by DFS(G,u)
let T be the nodes found by DFS (G®,u)
// S N T contains SCC (u)
label S N T with c
let c < c + 1

return comp

Strong Components (Directed)

* Problem: Given a directed graph G, split it into
strongly connected components

* Input: Directed graph G = (V, E)

* Output: A labeling of the vertices by their strongly
connected component

e Find SCCs in 0(n? + nm) time using DFS

* Can find SCCs in O(n + m) time using a more
clever version of DFS

Post-Ordering

cloek

—

Post-Ordering 7

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
explored[u] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintaina counter clock, initially setclock = 1
* post-visit (u):
set postorder[u]=clock, clock=clock+l

c}ﬁ_‘g b tree
Example “.H_l\\\ mn focvaradl

Aw Ccros?
 Compute the post-order of this graph

* DFS from a, search in alphabetical order

el ¥ 7 S 0\ 6 4 2 2

Example

 Compute the post-order of this graph
* DFS from a, search in alphabetical order

()
6

: :
Post-Order 8 7 5 4 6 1 2

Obervation

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

Post-Order 8 7 5 4 6 1 2 3

. \ S an Q .“Hf\r\ ‘ICJI ‘(.'vxo(,vx
Observation \Z ba\ctwm: /et]

e Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

PAbA
* DFS(u) can’t finish untilits children are finished

* If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

* When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)

* DFS(v) started before DFS(u) but finished after

* Canonlyhappenfora backward edge

O——

Topological Ordering

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
e Can be much more complex than a forest

Directed Acyclic Graphs (DAGs)

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

ONOJOROSORORONO

* A topological ordering of a directed graph is a
labeling of the nodes from vy, ..., v, so that all
edges go “forwards”, that is (vi,vj) EE=j>1

* (has a topological ordering= G isa DAG

Directed Acyclic Graphs (DAGs)

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

* We will design one algorithm that either outputsa
topological ordering or finds a directed cycle

Topological Ordering

* Observation: the first node must have no in-edges
/-\/‘-‘,
OJOROIORORTRO

* Observation: In any DAG, there is always a node

with no incoming edges - Follow Meom Y edges

vat] ethe Yo fond &
O—%O node ulo ‘“\j) o find

'\ a COC\L

Topolggica
© 6
* Fact: In any DAG, there is a node with no incoming

edges evens n€IN evey DAG wth 4 nodes har a op. arde
* Thm: Every DAG has a topological ordering

* Proof (Induction): Base Case: n=)] w doveous

- —

h ln duet Me g’l’cP" g“}’?m'e ew‘é—

~ \ w ! nodke DAG hes a o ordumy

~

@ Cl'\oos,e . node ._// no N\(on-.vj ed}g

/

/ @’RQI"\M U MJ e ed S
@(‘} mdvcton ’H«-e, ree o rndke l""') A

D

toy. or*\urv\} U 5V oy Ve

Faster Topological Ordering

Post-Ordering
Owe©

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) : a a

explored[u] =1

for ((u,v) in E):

if (explored[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintaina counter clock, initially setclock = 1
* post-visit (u):
set postorder[u]=clock, clock=clock+l

Example

 Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order

Example

 Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order 8 7 5 4 6 1 2

Obervation

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

Post-Order 8 7 5 4 6 1 2 3

Observation

e Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge
* DFS(u) can’t finish untilits children are finished

* If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

* When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)
* DFS(v) started before DFS(u) but finished after

* Canonlyhappenfora backward edge

Fast Topological Ordering
ﬂ\—z_ f‘DoS—l'—o.rM s a \CDQCEL)&/‘AY +0}>. oxf»(uvsa, bzcboo-ds

cdg,a
* Claim: ordering nodes by decreasing postorder/

gives a topological ordering

* Proof:

« A DAG has no backward edges ~ 7erter#lil i
Sostordas [1
(\),L’-)e E

J
» Suppose thisis not a topological ordering

* That means there exists an edge (u,v) such that
postorder[u] < postorder|[v]

* We showed that any such (u,v) is a backward edge

e But there are no backward edges, contradiction!

Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy, ..., v, so that (vi,vj) EE=j>i

e Can compute a TO in O(n + m) time using DFS
» Reverse of post-order is a topological order

Desighing the Algorithm

* Claim: If BFS fails, then G contains an odd cycle
* If G containsan odd cycle then G can’t be 2-colored!
* Example of a phenomenon called duality

