CS 3000: Algorithms & Data Jonathan Ullman

Lecture 1

- Course Overview
- Warmup Exercise (Induction, Asymptotics, Fun)

Jan 6, 2020

Me

Jon Ullman

- Call me Jon
- NEU since 2015
- Office: 623 ISEC
- Office Hours: Tue 2:30 4:00pm

Research:

- Privacy, Machine Learning, Cryptography, Game Theory
- The common thread is algorithms

The TA Team

Danish Farooq

• Office Hours: Thu 6:00 – 8:00pm

Location: 605 ISEC

Zach Galeaz

• Office Hours: Fri 4:00 – 6:00pm

Location: 501 ISEC

The TA Team

Matthew Jones

• Office Hours: Thu 4:00 – 6:00pm

• Location: 605 ISEC

Josh Towner

Office Hours: Wed 5:00 – 7:00pm

Location: 605 ISEC

Algorithms

What is an algorithm?

An explicit, precise, unambiguous, mechanicallyexecutable sequence of elementary instructions for solving a computational problem.

-Jeff Erickson

• Essentially all computer programs (and more) are algorithms for some computational problem.

Algorithms

What is algorithms?

The study of how to solve computational problems.

- Abstract and formalize computational problems
- Identify useful algorithmic tools for solving computational problems
- Analyze and compare algorithms
 - This Class: correctness, running time, space usage
 - Beyond: parallelism, data, robustness, simplicity, extensibility

Algorithms

What is CS 3000: Algorithms & Data?

The study of how to solve computational problems, and rigorously prove properties of algorithms

- Proofs are about comprehension and communication, not about formality or certainty
 - Different emphasis from courses on logic
 - We'll talk a lot about proof techniques and what makes a correct and convincing proof

Improve problem solving:

- How/why do algorithms really work?
- How to attack new problems?
- Which design techniques work well?
- How to compare different solutions?
- How to know if a solution is the best possible?

Improve communication:

- How to explain solutions?
- How to convince someone that a solution is correct?
- How to convince someone that a solution is best?

Get Rich:

- Many of the world's most successful companies (e.g. Google, Akamai) began with algorithms.
- These companies want you to solve algorithms problems on the spot

Understand the natural world:

• Brains, cells, networks, etc. often viewed as algorithms.

Exercise the brain:

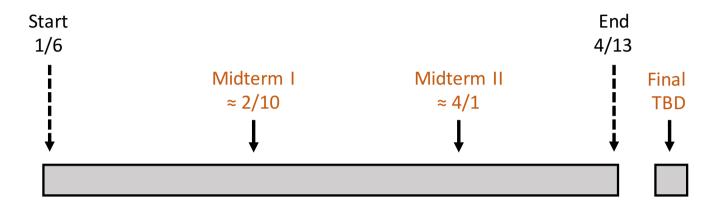
• "Algorithms are little packets of brilliance." -Olin Shivers

• Fun:

• Yes, seriously, fun.

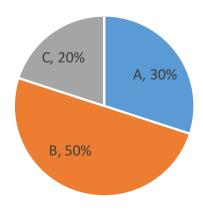
Learning these skills is hard, and takes practice!

Course Structure

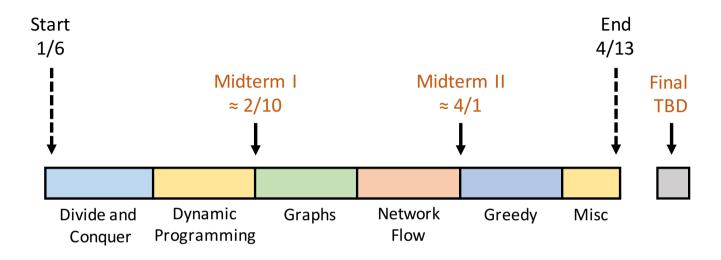


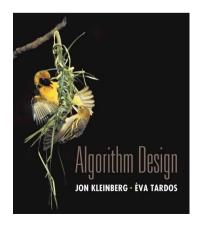
Typical Grade Distribution

- HW = 45%
- Exams = 55%
 - Midterm I = 15%
 - Midterm II = 15%
 - Final = 25%



Course Structure





Textbook:

Algorithm Design by Kleinberg and Tardos

More resources on the course website

Homework

- Weekly HW Assignments (45% of grade)
 - Due Fridays by 11:59pm
 - HW1 out now! Due Fri 1/17!
 - No extensions, no late work
 - Lowest HW score will be dropped from your grade

A mix of mathematical and algorithmic questions

Homework Policies

- Homework must be typeset in LaTeX!
 - Many resources available
 - Many good editors available (TexShop, TexStudio)
 - I will provide HW source

The Not So Short Introduction to IATEX 2ε

Or LATEX 2€ in 157 minutes

by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl Version 5.06. June 20. 2016

Homework Policies

- Homework will be submitted on Gradescope!
 - Entry code: 9GZP3P
 - Sign up today, or even right this minute!

Homework Policies

- You are encouraged to work with your classmates on the homework problems.
 - You may not use the internet
 - You may not use students/people outside of the class

Collaboration Policy:

- You must write all solutions by yourself
- You may not share any written solutions
- You must state all of your collaborators
- We reserve the right to ask you to explain any solution

Discussion Forum

- We will use Piazza for discussions
 - Ask questions and help your classmates
 - Please use private messages sparingly
- Sign up today, or even right this minute!

Course Website

http://www.ccs.neu.edu/home/jullman/cs3000s20/syllabus.html http://www.ccs.neu.edu/home/jullman/cs3000s20/schedule.html

		CS3000: Algorithms 8	a Data	
		Syllabus Sch	edule	
		This schedule will be updated frequently—	check back often!	
<u>#</u>	<u>Date</u>	<u>Topic</u>	Reading	<u>HW</u>
1	F 9/7	Course Overview		HW1 Out (pdf, tex)
2	T 9/11	Stable Matching: Gale-Shapley Algorithm	KT 1.1,1.2,2.3	
3	F 9/14	Divide and Conquer: Mergesort, Asymptotic Analysis	KT 5.1, 2.1-2.2	
4	T 9/18	Divide and Conquer: Karatsuba, Recurrences	KT 5.2, 5.5 Erickson II.1-3	HW1 Due HW2 Out
5	F 9/21	Divide and Conquer: Master Theorem, Median	Erickson 1.5-1.7	
6	T 9/25	Divide and Conquer: More Examples		HW2 Due

One More Thing: I need to count how many students are in this class!

Simple Counting

```
73 students
57 seconds
```

```
SimpleCount:
   Find first student
   First student says 1
   Until we're out of students:
      Find the next student
      Next student says (what last student said + 1)
```

- Is this correct?
- How long does this take with n students?

Fancy Counting

```
75 students?
178 seconds
```

```
FancyCount:
   Everyone set your number to 1
   Everyone stand up
   Until only one student is standing:
     Try to pair up with a neighbor
     If (you are not in a pair):
        Stay standing
   Else If (you are in a pair):
        Sum up your numbers
        Sit down if you are the taller person in the pair
   Say your number
```

• Is this correct? Why?

Loop invariant: Sum of the numbers of standing people is n.

Parallel Counting

```
FancyCount:
    Everyone set your number to 1
    Everyone stand up
    Until only one student is standing:
        Try to pair up with a neighbor
        If (you are not in a pair):
            Stay standing
        Else If (you are in a pair):
            Sum up your numbers
            Sit down if you are the taller person in the pair
        Say your number
```

How long does this take with n students?

Running Time

• Recurrence: T(1) = 3, $T(n) = 2 + T(\lceil n/2 \rceil)$

Running Time

• Claim: For every number of students $n = 2^m$

$$T(2^m) = 2m + 3$$
 $T(n) = 2 \cdot \log_2(n) + 3$

Break it up into infinitely many

$$H(m): T(2^m) = 2m+3$$

- · H(I) is true
- · H(m) => H(m+1) Y mEIN

Proof by Induction

- Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$ $\forall m \in \mathbb{N}$ $T(2^m) = 2m + 3$
- Induction: "automatically" prove for every m
 - Inductive Hypothesis: Let H(m) be the statement $T(2^m) = 2m + 3$

- Base Case: H(1) is true
- Inductive Step: For every $m \ge 1$, $H(m) \Longrightarrow H(m+1)$
- Conclusion: statement is true for every m

$$T(2^m) = 2m + 3 = T(2^{m+1}) = 2(m+1) + 3$$

①
$$T(2^{m+1}) = 2 + T(2^m)$$

$$= 2(m+1) + 3$$

Proof by Induction

• Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$

Ask the Audience

Who Wants to be a Millionaire?

Ask the Audience

• Claim: For every $n \in \mathbb{N}$, $\sum_{i=0}^{n-1} 2^i = 2^n - 1$

Proof by Induction:

Running Time

- Simple counting: T(n) = 2n steps 57s
- Fancy counting: $T(n) = 2 \log_2 n + 3$ steps 17%

• But for this class, simple counting was faster?

Running Time

- Simple counting: T(n) = 2n seconds \times M^O
- Fancy counting: $T(n) = 30 \log_2 n + 45$ seconds

- Compare algorithms by asymptotics!
 - Logarithmic-time beats linear-time as $n \to \infty$

