CS3000: Algorithms & Data
Jonathan Ullman

Lecture 6:
• Dynamic Programming:
 Fibonacci Numbers, Interval Scheduling

Sep 25, 2018
Dynamic Programming

• Don’t think too hard about the name
 • *I thought dynamic programming was a good name. It was something not even a congressman could object to.* So I used it as an umbrella for my activities. -Bellman

• Dynamic programming is careful recursion
 • Break the problem up into small pieces
 • Recursively solve the smaller pieces
 • **Key Challenge:** identifying the pieces

 Divide and Conquer: speeding up simple algorithms
 Dynamic Programming: often the only polynomial time alg
Warmup: Fibonacci Numbers
Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
• $F(n) = F(n - 1) + F(n - 2)$

• $F(n) \to \phi^n \approx 1.62^n$

• $\phi = \left(\frac{1+\sqrt{5}}{2}\right)$ is the golden ratio
Fibonacci Numbers: Take I

FibI(n):
 If (n = 0): return 0
 ElseIf (n = 1): return 1
 Else: return FibI(n-1) + FibI(n-2)

• How many recursive calls does FibI(n) make?
 • 2^n
 • $2n$

\[
T(n) = \text{# of calls made by FibI(n)}
\]
\[
T(n) = T(n-1) + T(n-2)
\]
\[
T(0) = 0
\]
\[
T(1) = 0
\]
\[
T(2) = 2
\]
\[
T(n) = F(n) \approx 1.62^n
\]
Fibonacci Numbers: Take II

"Memoization", "Top-Down"

\[M \leftarrow \text{empty array}, M[0] \leftarrow 0, M[1] \leftarrow 1 \]

\[
\text{FibII}(n):
\begin{align*}
\text{If (M}[n]\text{ is not empty): return M}[n]\text{]}
\text{ElseIf (M}[n]\text{ is empty):}
\quad M[n] \leftarrow \text{FibII}(n-1) + \text{FibII}(n-2)
\quad \text{return M}[n]\text{]}
\end{align*}
\]

- How many recursive calls does \textbf{FibII}(n) make?

Array has \(n+1 \) elements, need to fill \(n-1 \)

Each time we make a pair of recursive calls, we fill one \(M[i] \)

\[\Rightarrow \leq 2(n-1) = O(n) \text{ recursive calls} \]
Fibonacci Numbers: Take III

"Bottom-Up"

FibIII(n):
M[0] ← 0, M[1] ← 1
For i = 2,...,n:
 M[i] ← M[i-1] + M[i-2]
return M[n]

• What is the running time of FibIII(n)?

\[F(n) = \left(\frac{1+\sqrt{5}}{2} \right)^n \]

n-1 additions, each addition involves \(\Theta(n) \)-digit numbers
\(\Rightarrow \Theta(n^2) \) time
Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
• \(F(n) = F(n - 1) + F(n - 2) \)

• Solving the recurrence recursively takes \(\approx 1.62^n \) time
 • Problem: Recompute the same values \(F(i) \) many times

• Two ways to improve the running time
 • Remember values you’ve already computed (“top down”)
 • Iterate over all values \(F(i) \) (“bottom up”)

• **Fact:** Can solve even faster using Karatsuba’s algorithm!
Dynamic Programming: Interval Scheduling
Interval Scheduling (Weighted)

• How can we optimally schedule a resource?
 • This classroom, a computing cluster, ...

• **Input:** n intervals (s_i, f_i) each with value v_i
 • Assume intervals are sorted so $f_1 < f_2 < \cdots < f_n$

• **Output:** a compatible schedule S maximizing the total value of all intervals
 • A **schedule** is a subset of intervals $S \subseteq \{1, \ldots, n\}$
 • A schedule S is **compatible** if no $i, j \in S$ overlap
 • The **total value** of S is $\sum_{i \in S} v_i$
Interval Scheduling

Index

1
\[v_1 = 2 \]

2
\[v_2 = 4 \]

3
\[v_3 = 4 \]

4
\[v_4 = 7 \]

5
\[v_5 = 2 \]

6
\[v_6 = 1 \]

\[S = \{2, 5\} \]
\[\text{value}(S) = 6 \]
A Recursive Formulation

• Let O be the **optimal** schedule

• **Case 1:** Final interval is not in O (i.e. $6 \notin O$)
 • Then O must be the optimal solution for $\{1, \ldots, 5\}$

```latex
\begin{align*}
\text{If } O \text{ were not the optimal sched for } &\{1, \ldots, 5\} \\
\text{then } O \text{ is not the optimal sched for } &\{1, \ldots, 6\}.
\end{align*}
```

Index

1. $v_1 = 2$
2. $v_2 = 4$
3. $v_3 = 4$
4. $v_4 = 7$
5. $v_5 = 2$

O is opt on these
A Recursive Formulation

• Let O be the **optimal** schedule

• **Case 2:** Final interval is in O (i.e. $6 \in O$)
 • Then O must be $6 +$ the optimal solution for $\{1, \ldots, 3\}$

$$\text{If } O \setminus \{6\} \text{ were not opt for } \{1, \ldots, 3\} \text{ then } 6 + [\text{opt for } \{1, \ldots, 3\}] \text{ is better than } O$$

Index

1
2
3
4
5
6

$v_1 = 2$
$v_2 = 4$
$v_3 = 4$
$v_6 = 1$

which is better?

1. opt sched for $\{1, \ldots, 5\}$
2. opt sched for $\{1, \ldots, 3\}$ + 6

which is better?
A Recursive Formulation

- Let O_i be the **optimal schedule** using only the intervals $\{1, \ldots, i\}$

- **Case 1:** Final interval is not in O ($i \notin O_i$)
 - Then O must be the optimal solution for $\{1, \ldots, i - 1\}$ (O_{i-1})

- **Case 2:** Final interval is in O ($i \in O_i$)
 - Assume intervals are sorted so that $f_1 < f_2 < \cdots < f_n$
 - Let $p(i)$ be the largest j such that $f_j < s_i$
 - Then O_i must be $i +$ the optimal solution for $\{1, \ldots, p(i)\}$

 $$O_i = i + O_{p(i)}$$
A Recursive Formulation

- Let $OPT(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$

 - Case 1: Final interval is not in O ($i \notin O_i$)
 - Then O must be the optimal solution for $\{1, \ldots, i - 1\}$

 - Case 2: Final interval is in O ($i \in O_i$)
 - Assume intervals are sorted so that $f_1 < f_2 < \cdots < f_n$
 - Let $p(i)$ be the largest j such that $f_j < s_i$
 - Then O must be $i +$ the optimal solution for $\{1, \ldots, p(i)\}$

- $OPT(i) = \max\{OPT(i - 1), v_i + OPT(p(i))\}$
- $OPT(0) = 0, OPT(1) = v_1$
Interval Scheduling: Take I

// All inputs are global vars
FindOPT(n):
 if (n = 0): return 0
 elseif (n = 1): return v_1
 else:
 return max{FindOPT(n-1), v_n + FindOPT(p(n))}

• What is the running time of FindOPT(n)?

As many as 1.62^n recursive calls

$\forall i \quad p(i) = i-2$
Interval Scheduling: Take II

// All inputs are global vars
M ← empty array, M[0] ← 0, M[1] ← Φ
FindOPT(n):
 if (M[n] is not empty): return M[n]
 else:
 M[n] ← max{FindOPT(n-1), v_n + FindOPT(p(n))}
 return M[n]

• What is the running time of FindOPT(n)?

 Need to fill ≤ n-1 entries of M

 × 2 recursive calls / entry

 ≤ 2(n-1) recursive calls

 O(n) running time

 + O(nlog n) to sort by f;
Interval Scheduling: Take II

Index
1 \[v_1 = 2 \] \[p(1) = 0 \]
2 \[v_2 = 4 \] \[p(2) = 0 \]
3 \[v_3 = 4 \] \[p(3) = 1 \]
4 \[v_4 = 7 \] \[p(4) = 0 \]
5 \[v_5 = 2 \] \[p(5) = 3 \]
6 \[v_6 = 1 \] \[p(6) = 3 \]

\[M[4] = \max \{ 6, 7 + 0 \} \]
\[M[5] = \max \{ 7, 2 + 6 \} \]
\[M[6] = \max \{ 8, 1 + 6 \} \]

\[M[i] = \text{OPT}(i) \]
\[M[23] = \max \{ M[13], 4 + M[0] \} \]
\[M[3] = \max \{ M[23], 4 + M[13] \} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Interval Scheduling: Take III

// All inputs are global vars
FindOPT(n):
 M[0] ← 0, M[1] ← 1
 for (i = 2,...,n):
 M[i] ← max{FindOPT(n - i), vn + FindOPT(p(i))}
 return M[n]

• What is the running time of FindOPT(n)?
 \[O(n) + O(n \log n) \text{ to sort if needed} \]
Finding the Optimal Solution

- Let $OPT(i)$ be the **value of the optimal schedule** using only the intervals $\{1, \ldots, i\}$

- **Case 1:** Final interval is not in O ($i \notin O_i$) \(\Rightarrow\) $O_i = O_{i-1}$

- **Case 2:** Final interval is in O ($i \in O$) \(\Rightarrow\) $O_i = \xi_i \beta + O_{p(i)}$

- \[OPT(i) = \max\{OPT(i-1), v_i + OPT(p(i))\}\]

 - then $O_i = O_{i-1}$
 - then $O_i = \xi_i \beta + O_{p(i)}$
Interval Scheduling: Take II

\[M[0] = \text{OPT}(0) \]

\[M[1] = \text{OPT}(1) \]

\[M[2] = \text{OPT}(2) \]

\[M[3] = \text{OPT}(3) \]

\[M[4] = \text{OPT}(4) \]

\[M[5] = \text{OPT}(5) \]

\[M[6] = \text{OPT}(6) \]

\[M[7] = \text{OPT}(7) \]

\[M[8] = \text{OPT}(8) \]

\[0 = M[0], M[1], M[2], M[3] \]

\[2 = M[4], M[5], M[6], M[7] \]

\[4 = M[8] \]
Interval Scheduling: Take III

// All inputs are global vars
FindSched(M,n):
 if (n = 0): return ∅
 elseif (n = 1): return {1}
 elseif (vn + M[p(n)] > Mn-1):
 return {n} + FindSched(M,p(n))
 else:
 return FindSched(M,n-1)

• What is the running time of \text{FindSched}(n) ?
 \[O(n)\text{ time}\]
Now You Try

1. $v_1 = 3$
2. $v_2 = 5$
3. $v_3 = 9$
4. $v_4 = 6$
5. $v_5 = 13$
6. $v_6 = 3$

<table>
<thead>
<tr>
<th>$p(1)$</th>
<th>$p(2)$</th>
<th>$p(3)$</th>
<th>$p(4)$</th>
<th>$p(5)$</th>
<th>$p(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dynamic Programming Recap

• Express the optimal solution as a **recurrence**
 • Identify a small number of **subproblems**
 • Relate the optimal solution on subproblems

• Efficiently solve for the **value** of the optimum
 • Simple implementation is exponential time
 • **Top-Down:** store solution to subproblems
 • **Bottom-Up:** iterate through subproblems in order

• Find the **solution** using the table of **values**