Lecture 3:
• Divide and Conquer: Mergesort
• Asymptotic Analysis

Sep 14, 2018
Asymptotic Analysis
Asymptotic Order Of Growth

• Predicting the wall-clock time of an algorithm is nigh impossible.
 • What machine will actually run the algorithm?
 • Impossible to exactly count “operations”?
• Do we really need to worry about this problem?
 • Mostly we want to compare algorithms, so we can select the right one for the job
 • Mostly we don’t care about small inputs, we care about how the algorithm will scale

Asymptotic Order Of Growth

\[y = n^2 \]
\[y = 10n + 50 \]
Asymptotic Order Of Growth

- **Asymptotic Analysis:** How does the running time grow as the size of the input grows?

\[f(n) \implies g(n) \]

- exact running time (messy, dependent on the machine)

\[\text{order of growth}\]
Asymptotic Order Of Growth

- **“Big-Oh” Notation:** \(f(n) = O(g(n)) \) if there exists \(c \in (0, \infty) \) and \(n_0 \in \mathbb{N} \) such that \(f(n) \leq c \cdot g(n) \) for every \(n \geq n_0 \).

- Asymptotic version of \(f(n) \leq g(n) \)

- Roughly equivalent to \(\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \)

\[
f(n) = 3n^2 + n \quad g(n) = n^2
\]

\[
\text{Lim: } f(n) = O(g(n))
\]

\[
\text{Pf: } c = 4 \quad n_0 = 1
\]

\[
\forall \ n > n_0 \quad 3n^2 + n \leq 4n^2
\]

\[
3n^2 + n \leq 3n^2 + n^2 \leq 4n^2 \leq 4n^2 \quad \alpha
\]
Ask the Audience

• **“Big-Oh” Notation:** $f(n) = O(g(n))$ if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$.

• Which of these statements are true?
 - $3n^2 + n = O(n^2)$ ✓
 - $n^3 = O(n^2)$
 - $10n^4 = O(n^5)$
 - $\log_2 n = O(\log_{16} n)$

\[\lim_{n \to \infty} \frac{n^3}{n^2} = \infty \]

\[\lim_{n \to \infty} \frac{n^3}{n^2} = \infty \]

\[c = 1 \quad n_0 = 10 \]

\[\forall n > n_0 \quad 10n^4 \leq n^5 \]

\[\log_{16} n = \frac{\log_2 n}{\log_2 16} = \frac{1}{4} \log_2 n \]
Big-Oh Rules

- Constant factors can be ignored
 \[\forall C > 0 \quad Cn = O(n) \quad \text{and} \quad f(n) = C \cdot g(n) \Rightarrow f(n) = O(g(n)) \]

- Smaller exponents are Big-Oh of larger exponents
 \[\forall a > b \quad n^b = O(n^a) \quad \text{and} \quad n^2 = O(n^{2.0001}) \]

- Any logarithm is Big-Oh of any polynomial
 \[\forall a, \varepsilon > 0 \quad \log_a n = O(n^{\varepsilon}) \quad \text{and} \quad \log_2 n = O(n^{0.0001}) \]

- Any polynomial is Big-Oh of any exponential
 \[\forall a > 0, b > 1 \quad n^a = O(b^n) \quad \text{and} \quad n^{1000} = O(1.0001^n) \]

- Lower order terms can be dropped
 \[n^2 + n^{3/2} + n = O(n^2) \quad \Rightarrow \quad f_1(n) + f_2(n) \quad \text{and} \quad f_1(n) = O(g(n)), f_2(n) = O(g(n)) \quad \Rightarrow \quad f_1 + f_2 = O(g) \]
A Word of Caution

• The notation $f(n) = O(g(n))$ is weird—do not take it too literally

\[n = O(n^2) \quad n = O(n^3) \quad \text{(Not really an “=” sign)} \]

Claim: $n = O(1)$

\[
\begin{align*}
 n &= \sum_{i=1}^{n} 1 = \sum_{i=1}^{n} O(1) \\
 &= \sum_{i=2}^{n} O(1) \\
 &\vdots \\
 &= \sum_{i=n}^{n} O(1) = O(1)
\end{align*}
\]
Asymptotic Order Of Growth

• **“Big-Omega” Notation:** \(f(n) = \Omega(g(n)) \) if there exists \(c \in (0, \infty) \) and \(n_0 \in \mathbb{N} \) s.t. \(f(n) \geq c \cdot g(n) \) for every \(n \geq n_0 \).

 - Asymptotic version of \(f(n) \geq g(n) \)
 - Roughly equivalent to \(\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 \)

• **“Big-Theta” Notation:** \(f(n) = \Theta(g(n)) \) if there exists \(c_1 \leq c_2 \in (0, \infty) \) and \(n_0 \in \mathbb{N} \) such that \(c_2 \cdot g(n) \geq f(n) \geq c_1 \cdot g(n) \) for every \(n \geq n_0 \).

 - Asymptotic version of \(f(n) = g(n) \)
 - Roughly equivalent to \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \in (0, \infty) \)
Asymptotic Running Times

• **We usually write running time as a Big-Theta**
 - Exact time per operation doesn’t appear
 - Constant factors do not appear
 - Lower order terms do not appear

• **Examples:**
 - $30 \log_2 n + 45 = \Theta(\log n)$
 - $Cn \log_2 2n = \Theta(n \log n)$
 - $\sum_{i=1}^{n} i = \Theta(n^2)$
Asymptotic Order Of Growth

- **“Little-Oh” Notation:** \(f(n) = o(g(n)) \) if for every \(c > 0 \) there exists \(n_0 \in \mathbb{N} \) s.t. \(f(n) < c \cdot g(n) \) for every \(n \geq n_0 \).
 - Asymptotic version of \(f(n) < g(n) \)
 - Roughly equivalent to \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

- **“Little-Omega” Notation:** \(f(n) = \omega(g(n)) \) if for every \(c > 0 \) there exists \(n_0 \in \mathbb{N} \) such that \(f(n) > c \cdot g(n) \) for every \(n \geq n_0 \).
 - Asymptotic version of \(f(n) > g(n) \)
 - Roughly equivalent to \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)
Ask the Audience!

- Rank the following functions in increasing order of growth (i.e. f_1, f_2, f_3, f_4 so that $f_i = O(f_{i+1})$)
 - $n \log_2 n$
 - n^2
 - $100n$
 - $3^{\log_2 n}$

Correct Order: $100n, n \log_2 n, 3^{\log_2 n}, 100n, n^2, 3^{\log_2 n}, n^2, 3^{\log_2 n}$
\[100n \text{ vs. } n \log_2 n\]

\[100n = O(n \log_2 n), \quad c = 100, \quad n_0 = 2\]

\[100n \leq 100n \log_2 n = O(n \log_2 n)\]

\[n \log_2 n \text{ vs. } n^2\]

\[n \cdot \log_2 n \text{ vs. } n \cdot n\]

\[O(n) \cdot O(\log n) \text{ vs. } O(n) \cdot O(n)\]

\[2^{\log_2 n} = n, \quad 3^{\log_2 n} = \left(2^{\log_2 3}\right)^{\log_2 n} = (2^{\log_2 n})^{\log_2 3} = n^{\log_2 3} \approx 1.59\]

\[3^{\log_2 n} = O(n^2)\]

\[n \log_2 n = O(3^{\log_2 n})\]
Why Asymptotics Matter

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>$< 1 \text{ sec}$</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>$< 1 \text{ sec}$</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>1017 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>$< 1 \text{ sec}$</td>
<td>$< 1 \text{ sec}$</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>$< 1 \text{ sec}$</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

- **polynomials** good / **exponentials** bad
- **logarithms** good / **polynomials** bad
- different polynomials make a big difference
Divide and Conquer Algorithms
Divide and Conquer Algorithms

- Split your problem into smaller subproblems
- Recursively solve each subproblem
- Combine the solutions to the subproblems

Useful when combining solutions is easier than solving from scratch

Divide et impera!
-Philip II of Macedon
Divide and Conquer Algorithms

• **Examples:**
 - Mergesort: sorting a list
 - Binary Search: search in a sorted list
 - Karatsuba’s Algorithm: integer multiplication
 - Fast Fourier Transform
 - ...

• **Key Tools:**
 - Correctness: proof by induction
 - Running Time Analysis: recurrences
 - Asymptotic Analysis
Sorting

Given a list of n numbers, put them in ascending order.
A Simple Algorithm: Insertion Sort

Find the maximum

Put it at the end

11 3 42 28 17 8 2 15

↑

11 3 15 28 17 8 2 42
A Simple Algorithm: Insertion Sort

<table>
<thead>
<tr>
<th>11</th>
<th>3</th>
<th>42</th>
<th>28</th>
<th>17</th>
<th>8</th>
<th>2</th>
<th>15</th>
</tr>
</thead>
</table>

Find the maximum

<table>
<thead>
<tr>
<th>11</th>
<th>3</th>
<th>15</th>
<th>28</th>
<th>17</th>
<th>8</th>
<th>2</th>
<th>42</th>
</tr>
</thead>
</table>

Swap it into place, repeat on the rest

<table>
<thead>
<tr>
<th>11</th>
<th>3</th>
<th>15</th>
<th>2</th>
<th>17</th>
<th>8</th>
<th>28</th>
<th>42</th>
</tr>
</thead>
</table>

Repeat \(n - 1 \) times.

| 2 | 3 | 8 | 11 | 15 | 17 | 28 | 42 |
A Simple Algorithm: Insertion Sort

Find the maximum

Swap it into place, repeat on the rest

7.

Running Time:

\[
\begin{align*}
\sum_{i=1}^{n-1} (n-i+1) &= \frac{n(n+1)}{2} - 1 = \Theta(n^2)
\end{align*}
\]
Divide and Conquer: Mergesort

Split

| 11 | 3 | 42 | 28 | 17 | 8 | 2 | 15 |

Recursively Sort

<table>
<thead>
<tr>
<th>11</th>
<th>3</th>
<th>42</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>11</td>
<td>28</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>8</th>
<th>2</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Merge

| 2 | 3 | 8 | 11 | 15 | 17 | 28 | 42 |
Divide and Conquer: Mergesort

- **Key Idea:** If L, R are sorted lists of length n, then we can merge them into a sorted list A of length $2n$ in time $O(n)$
 - Merging two sorted lists is faster than sorting from scratch
Merging

Merge(L,R):

Let n ← len(L) + len(R)
Let A be an array of length n
j ← 1, k ← 1,

For i = 1,...,2n:
 If (j > len(L)): // L is empty
 A[i] ← R[k], k ← k+1
 ElseIf (k > len(R)): // R is empty
 A[i] ← L[j], j ← j+1
 ElseIf (L[j] <= R[k]): // L is smallest
 A[i] ← L[j], j ← j+1
 Else: // R is smallest
 A[i] ← R[k], k ← k+1

Return A
Merging

MergeSort(A):
 If (len(A) = 1): Return A // Base Case

 Let \(m \leftarrow \lceil \text{len}(A)/2 \rceil \) // Split
 Let L ← A[1:m], R ← A[m+1:n]

 Let L ← MergeSort(L) // Recurse
 Let R ← MergeSort(R)

 Let A ← Merge(L,R) // Merge

 Return A
Correctness of Mergesort

- **Claim:** The algorithm **Mergesort** is correct

 \(\forall n \in \mathbb{N} \quad \forall \text{ list } A \text{ with } n \text{ numbers} \quad \text{Mergesort returns } A \text{ in sorted order} \)

 Inductive Hypothesis: \(H(n) = \forall A \text{ of size } n \text{ Mergesort is correct} \)

 Base Case: \(H(1) \) is true, obviously

 Inductive Step: Assume \(H(1), \ldots, H(n) \) are all true. We’ll prove \(H(n+1) \).
Running Time of Mergesort

Inductive Step:

Assume that Mergesort is correct for all A of size $\leq n$.

1. $\left\lceil \frac{n+1}{2} \right\rceil, \left\lfloor \frac{n+1}{2} \right\rfloor \leq n$
2. L, R are correctly sorted by Mergesort
3. L, R are sorted $\Rightarrow A$ is sorted
4. Mergesort is correct for lists of size $n+1$

Correctness

Mergesort(A):

- If $(n = 1)$: Return A

- Let $m \leftarrow \lceil n/2 \rceil$
 - Let $L \leftarrow A[1:m]$
 - Let $R \leftarrow A[m+1:n]$
 - Let $L \leftarrow \text{Mergesort}(L)$
 - Let $R \leftarrow \text{Mergesort}(R)$
 - Let $A \leftarrow \text{Merge}(L, R)$

Return A

H(n)

\[H(1) \quad \ldots \quad H(n) \]

\[\downarrow \]

\[H(n+1) \]
Running Time of Mergesort

\[T(n) = \text{time to sort a list of size } n \]

\[T(n) = 2 \times T\left(\frac{n}{2}\right) + C_n \]

\[T(1) = C \]

\[T(n) = O(n \log n) \]

\[
\text{MergeSort}(A):
\begin{align*}
\text{If } (n = 1): & \text{ Return } A \\
\text{Let } m & \leftarrow \lceil n/2 \rceil \\
\text{Let } L & \leftarrow A[1:m] \\
\text{Let } R & \leftarrow A[m+1:n] \\
\text{Let } L & \leftarrow \text{MergeSort}(L) \\
\text{Let } R & \leftarrow \text{MergeSort}(R) \\
\text{Let } A & \leftarrow \text{Merge}(L,R) \\
\text{Return } A
\end{align*}
\]
Mergesort Summary

• Sort a list of \(n \) numbers in \(Cn \log_2 2n \) time
 • Can actually sort anything that allows comparisons
 • No comparison based algorithm can be (much) faster

• Divide-and-conquer
 • Break the list into two halves, sort each one and merge
 • Key Fact: Merging is easier than sorting

• Proof of correctness
 • Proof by induction

• Analysis of running time
 • Recurrences