Lecture 2:
• Stable Matching: the Gale-Shapley Algorithm

Sep 11, 2018
National Residency Matching Program

- National system for matching US medical school graduates to medical residencies
 - Roughly 40,000 doctors per year
 - Assignment is almost entirely algorithmic
Labor Markets

• Most labor markets are frustrating
 • Not everyone can get their favorite job
 • The market is decentralized

• Decentralized labor markets are confusing

 Nobody has all the information
 Whatever you do could lead to an untenable
Centralized Labor Markets

• What if we could just assign jobs?

• What information would we want?
 - List of doctors and hospitals
 - Preferences (ranking ordinal preferences) from each doctor and each hospital

• How would we choose the assignment?
 - Stable
Matchings

In the real world, doctors only rank ≤ 15 hospitals

- We are given the following information
 - n doctors $d_1 \ldots d_n$
 - n hospitals $h_1 \ldots h_n$
 - each doctor’s ranking of hospitals $d_1 : h_2 > h_3 > h_1$
 - each hospital’s ranking of doctors $h_1 : d_1 > d_3 > d_2$

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH</td>
<td>Bob</td>
<td>Alice</td>
<td>Dorit</td>
<td>Ernie</td>
<td>Clara</td>
</tr>
<tr>
<td>BW</td>
<td>Dorit</td>
<td>Bob</td>
<td>Alice</td>
<td>Clara</td>
<td>Ernie</td>
</tr>
<tr>
<td>BID</td>
<td>Bob</td>
<td>Ernie</td>
<td>Clara</td>
<td>Dorit</td>
<td>Alice</td>
</tr>
<tr>
<td>MTA</td>
<td>Alice</td>
<td>Dorit</td>
<td>Clara</td>
<td>Bob</td>
<td>Ernie</td>
</tr>
<tr>
<td>CH</td>
<td>Bob</td>
<td>Dorit</td>
<td>Alice</td>
<td>Ernie</td>
<td>Clara</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>CH</td>
<td>MGH</td>
<td>BW</td>
<td>MTA</td>
<td>BID</td>
</tr>
<tr>
<td>Bob</td>
<td>BID</td>
<td>BW</td>
<td>MTA</td>
<td>MGH</td>
<td>CH</td>
</tr>
<tr>
<td>Clara</td>
<td>BW</td>
<td>BID</td>
<td>MTA</td>
<td>CH</td>
<td>MGH</td>
</tr>
<tr>
<td>Dorit</td>
<td>MGH</td>
<td>CH</td>
<td>MTA</td>
<td>BID</td>
<td>BW</td>
</tr>
<tr>
<td>Ernie</td>
<td>MTA</td>
<td>BW</td>
<td>CH</td>
<td>BID</td>
<td>MGH</td>
</tr>
</tbody>
</table>
Matchings

- A **matching** M is a set of doctor-hospital pairs
 - $M = \{ (d_1, h_2), (d_2, h_3) \}$
 - matching: no doctor/hospital appears twice
 - perfect matching: every doctor/hospital appears once
 - “d is matched to h” $(d, h) \in M$

“d is matched” $\exists h \text{ s.t. } (d, h) \in M$

“d is unmatched”
Stable Matchings

- A matching M is **unstable** if some doctor-hospital pair prefer one another to their mate in M

- Instabilities

 1. d, h such that d is matched to h', h is unmatched, but $d \succ h'$

 2. d, h such that h is matched to d', d is unmatched, but $h \succ d'$

 3. d, h such that d is matched to h', h is matched to d', but $d \succ h'$ and $h \succ d'$
Ask the Audience

- Either find a stable matching or convince yourself that there is no stable matching

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH</td>
<td>Alice</td>
<td>Bob</td>
<td>Clara</td>
</tr>
<tr>
<td>BW</td>
<td>Bob</td>
<td>Clara</td>
<td>Alice</td>
</tr>
<tr>
<td>BID</td>
<td>Alice</td>
<td>Clara</td>
<td>Bob</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>BW</td>
<td>BID</td>
<td>MGH</td>
</tr>
<tr>
<td>Bob</td>
<td>BID</td>
<td>MGH</td>
<td>BW</td>
</tr>
<tr>
<td>Clara</td>
<td>MGH</td>
<td>BID</td>
<td>BW</td>
</tr>
</tbody>
</table>

\[
M = \{ (\text{Alice}, \text{BU}) , (\text{Bob}, \text{MGH}) , (\text{Clara}, \text{BID}) \}
\]

\[
M' = \{ (\text{Alice}, \text{BID}) , (\text{Bob}, \text{MGH}) , (\text{Clara}, \text{BU}) \}
\]

\[
M'' = \{ (\text{Alice}, \text{BU}) , (\text{Bob}, \text{BID}) , (\text{Clara}, \text{MGH}) \}
\]
Gale-Shapley Algorithm

• Let M be empty
• While (some hospital h is unmatched):
 • If (h has offered a job to everyone): break
 • Else: let d be the highest-ranked doctor to which h has not yet offered a job
 • h makes an offer to d:
 • If (d is unmatched):
 • d accepts, add (d,h) to M
 • ElseIf (d is matched to h’ & d: h’ > h):
 • d rejects, do nothing
 • ElseIf (d is matched to h’ & d: h > h’):
 • d accepts, remove (d,h’) from M and add (d,h) to M
• Output M
Gale-Shapley Demo

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH</td>
<td>Bob</td>
<td>Alice</td>
<td>Dorit</td>
<td>Ernie</td>
<td>Clara</td>
</tr>
<tr>
<td>BW</td>
<td>Dorit</td>
<td>Bob</td>
<td>Alice</td>
<td>Clara</td>
<td>Ernie</td>
</tr>
<tr>
<td>BID</td>
<td>Bob</td>
<td>Ernie</td>
<td>Clara</td>
<td>Dorit</td>
<td>Alice</td>
</tr>
<tr>
<td>MTA</td>
<td>Alice</td>
<td>Dorit</td>
<td>Clara</td>
<td>Bob</td>
<td>Ernie</td>
</tr>
<tr>
<td>CH</td>
<td>Bob</td>
<td>Dorit</td>
<td>Alice</td>
<td>Ernie</td>
<td>Clara</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>CH</td>
<td>MGH</td>
<td>BID</td>
<td>BW</td>
<td>MTA</td>
</tr>
<tr>
<td>Bob</td>
<td>BID</td>
<td>BW</td>
<td>MTA</td>
<td>CH</td>
<td>MGH</td>
</tr>
<tr>
<td>Clara</td>
<td>BW</td>
<td>BID</td>
<td>MTA</td>
<td>CH</td>
<td>MGH</td>
</tr>
<tr>
<td>Dorit</td>
<td>MGH</td>
<td>CH</td>
<td>MTA</td>
<td>BID</td>
<td>BW</td>
</tr>
<tr>
<td>Ernie</td>
<td>MTA</td>
<td>BW</td>
<td>CH</td>
<td>BID</td>
<td>MGH</td>
</tr>
</tbody>
</table>
Observations

• Hospitals make offers in descending order

 If h made offers to d, d', and d got an offer first, then h: d > d'

• Doctors that get a job never become unemployed

 If a doctor has ever had a job, they will always have a job.

• Doctors accept offers in ascending order

 If a doctor was ever matched to h, then d is never matched to a lower ranked hospital than h.
Questions about the Gale-Shapley Algorithm:

- Will this algorithm terminate?
- Does it output a perfect matching?
- Does it output a stable matching? *(Does one even exist?)*
- How do we implement this algorithm efficiently?
GS Algorithm: Termination

• **Claim:** The GS algorithm terminates after n^2 iterations of the main loop

 • There are only n^2 doctor-hospital pairs
 • Never make the same offer twice
 • Alg halts if all offers are made
GS Algorithm: Perfect Matching

- **Claim**: The GS algorithm returns a perfect matching (all doctors/hospitals are matched)

Proof by Contradiction:

- Suppose some h is unmatched at the end.
- \implies there is some d that is unmatched
- B/c the alg terminated, h has made an offer to d
 - d accepted
 - d was matched and stays matched \therefore contradiction
 - d rejected
 - d was matched and stays matched \therefore contradiction
GS Algorithm: Stable Matching

- **Stability**: GS algorithm outputs a stable matching.
- Proof by contradiction:
 - Suppose there is an instability d, d', h, h'
 - $d \rightarrow h'$ ($d, h') \in M$
 - $d : h > h'$
 - $d' \not\rightarrow h$ ($d', h) \in M$
 - $h : d > d'$

 We'll derive the contradiction $d : h' > h$

 - Because h prefers d, h made an offer to d before d'
 - Case 1: d accepted
 - Case 2: d rejected
GS Algorithm: Stable Matching

- **Stability**: GS algorithm outputs a stable matching

- Proof by contradiction:
 - Suppose there is an instability d, d', h, h'

```
\begin{array}{c}
  d & \overset{d}{\longrightarrow} & h' \\
  d' & \overset{d'}{\longrightarrow} & h
\end{array}
```

- $(d, h') \in M$
- $(d', h) \in M$

Case 1: d accepted

- At some point d broke off the match with h
- Because "doctors go up" $d: h' > h$
GS Algorithm: Stable Matching

- **Stability:** GS algorithm outputs a stable matching

- **Proof by contradiction:**
 - Suppose there is an instability d, d', h, h'

 \[
 \begin{align*}
 d & \rightarrow h' \quad (d, h') \in M \\
 d' & \rightarrow h \quad (d', h) \in M \\
 \end{align*}
 \]

 - Case 2: d rejected
 - The d was matched to some h'' s.t. $d : h'' > h$
 - Because "doctors go up"

 Contradiction.
GS Algorithm: Running Time

- Let M be empty
- While (some hospital h is unmatched):
 - If (h has offered a job to everyone): break
 - Else: let d be the highest-ranked doctor to which h has not yet offered a job
 - h makes an offer to d:
 - If (d is unmatched):
 - d accepts, add (d,h) to M
 - ElseIf (d is matched to h' & d: h' > h):
 - d rejects, do nothing
 - ElseIf (d is matched to h' & d: h > h'):
 - d accepts, remove (d,h') from M and add (d,h) to M
- Output M
GS Algorithm: Running Time

• **Running Time:**
 - A straightforward implementation requires \(\approx n^3 \) operations, \(\approx n^2 \) space.
GS Algorithm: Running Time

• **Running Time:**
 • A careful implementation requires just \(\approx n^2 \) time and \(\approx n^2 \) space
GS Algorithm: Running Time

• **Running Time:**
 • A careful implementation requires just \(\approx n^2 \) time and \(\approx n^2 \) space

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>CH</td>
<td>MGH</td>
<td>BW</td>
<td>MTA</td>
<td>BID</td>
</tr>
<tr>
<td>Bob</td>
<td>BID</td>
<td>BW</td>
<td>MTA</td>
<td>MGH</td>
<td>CH</td>
</tr>
<tr>
<td>Clara</td>
<td>BW</td>
<td>BID</td>
<td>MTA</td>
<td>CH</td>
<td>MGH</td>
</tr>
<tr>
<td>Dorit</td>
<td>MGH</td>
<td>CH</td>
<td>MTA</td>
<td>BID</td>
<td>BW</td>
</tr>
<tr>
<td>Ernie</td>
<td>MTA</td>
<td>BW</td>
<td>CH</td>
<td>BID</td>
<td>MGH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MGH</th>
<th>BW</th>
<th>BID</th>
<th>MTA</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2\text{nd}</td>
<td>3\text{rd}</td>
<td>5\text{th}</td>
<td>4\text{th}</td>
<td>1\text{st}</td>
</tr>
<tr>
<td>Bob</td>
<td>4\text{th}</td>
<td>2\text{nd}</td>
<td>1\text{st}</td>
<td>3\text{rd}</td>
<td>5\text{th}</td>
</tr>
<tr>
<td>Clara</td>
<td>5\text{th}</td>
<td>1\text{st}</td>
<td>2\text{nd}</td>
<td>3\text{rd}</td>
<td>4\text{th}</td>
</tr>
<tr>
<td>Dorit</td>
<td>1\text{st}</td>
<td>5\text{th}</td>
<td>4\text{th}</td>
<td>3\text{rd}</td>
<td>2\text{nd}</td>
</tr>
<tr>
<td>Ernie</td>
<td>5\text{th}</td>
<td>2\text{nd}</td>
<td>4\text{th}</td>
<td>1\text{st}</td>
<td>3\text{rd}</td>
</tr>
</tbody>
</table>

Can convert from doc x rank \(\Rightarrow \) doc x hosp in \(n^2 \) ops
GS Algorithm: Running Time

• **Running Time:**

 • A careful implementation requires just \(\approx n^2 \) time and \(\approx n^2 \) space

\begin{align*}
1 & \text{ Convert the doctors' preferences } n^2 \text{ ops} \\
2 & \text{ Run GS (} n^2 \text{ offers} \times 1 \text{ operation} \text{)} \quad n^2 \text{ ops} \\
& \approx n^2 \text{ operations}
\end{align*}
Real World Impact

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>STABLE AND UNSTABLE (CENTRALIZED) MECHANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
</tr>
<tr>
<td></td>
<td>American medical markets</td>
</tr>
<tr>
<td></td>
<td>NRMP</td>
</tr>
<tr>
<td></td>
<td>Medical Specialties</td>
</tr>
<tr>
<td></td>
<td>British Regional Medical Markets</td>
</tr>
<tr>
<td></td>
<td>Edinburgh ('69)</td>
</tr>
<tr>
<td></td>
<td>Cardiff</td>
</tr>
<tr>
<td></td>
<td>Birmingham</td>
</tr>
<tr>
<td></td>
<td>Edinburgh ('67)</td>
</tr>
<tr>
<td></td>
<td>Newcastle</td>
</tr>
<tr>
<td></td>
<td>Sheffield</td>
</tr>
<tr>
<td></td>
<td>Cambridge</td>
</tr>
<tr>
<td></td>
<td>London Hospital</td>
</tr>
<tr>
<td></td>
<td>Other healthcare markets</td>
</tr>
<tr>
<td></td>
<td>Dental Residencies</td>
</tr>
<tr>
<td></td>
<td>Osteopaths (<‘94)</td>
</tr>
<tr>
<td></td>
<td>Osteopaths (≥‘94)</td>
</tr>
<tr>
<td></td>
<td>Pharmacists</td>
</tr>
<tr>
<td></td>
<td>Other markets and matching processes</td>
</tr>
<tr>
<td></td>
<td>Canadian Lawyers</td>
</tr>
<tr>
<td></td>
<td>Sororities</td>
</tr>
</tbody>
</table>

Table 1. Reproduced from Roth (2002, Table 1).
Real World Impact

- **Doctors ↔ Hospitals**
 - Have to deal with two-body problems
 - Have to make sure doctors do not game the system

- **Kidneys ↔ Patients**
 - Not all matches are feasible (blood types)
 - Certain pairs must be matched

- **Students ↔ Public Schools**
 - Siblings, walking zones, diversity

- **Reform Rabbis ↔ Synagogues**
 - No idea, just a fun example

2012 Nobel Prize to Lloyd Shapley and Al Roth!