Lecture 19:
• Midterm II Review
Topics to Review

• Key Graph Definitions / Properties
 • Directed/Undirected
 • Weighted/Unweighted
 • Trees, DAGs
 • Paths, Cycles
 • Connected Components, Strongly Connected Components
Graphs: Key Definitions

- **Definition:** A directed graph $G = (V, E)$
 - V is the set of nodes/vertices $|V| = n$
 - $E \subseteq V \times V$ is the set of edges $|E| = m$
 - An edge is an ordered $e = (u, v)$ "from u to v"

- **Definition:** An undirected graph $G = (V, E)$
 - Edges are unordered $e = (u, v)$ "between u and v"

- **Simple Graph:**
 - No duplicate edges
 - No self-loops $e = (u, u)$
Paths/Connectivity

• A **path** is a sequence of consecutive edges in E
 • $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \ldots, (w_{k-1}, v)\}$
 • $P = u \rightarrow w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow \cdots \rightarrow w_{k-1} \rightarrow v$
 • The **length** of the path is the # of edges

• An **undirected** graph is **connected** if for every two vertices $u, v \in V$, there is a path from u to v

• A **directed** graph is **strongly connected** if for every two vertices $u, v \in V$, there are paths from u to v and from v to u
Cycles

- A cycle is a path $v_1 - v_2 - \cdots - v_k - v_1$ where $k \geq 3$ and v_1, \ldots, v_k are distinct

![Graph with cycles]
Trees

• A simple undirected graph G is a tree if:
 • G is connected
 • G contains no cycles

• Theorem: any two of the following implies the third
 • G is connected
 • G contains no cycles
 • G has $= n - 1$ edges
Trees

• **Rooted tree**: choose a root node r and orient edges away from r
 • Models *hierarchical structure*

```
          1
         / \
        2   5
       /     /\n      3     4 6
     /       /  /
    4       7  8
     \      /  /
      6     9  8
```

“1 is the parent of 2”

“2, 3 are the children of 1”
Topics to Review

• Graph Representations
 • Adjacency Matrix
 • Adjacency List

All algorithms we study use adjacency list.
Adjacency-Matrix Representation

- The adjacency matrix of a graph $G = (V, E)$ with n nodes is the matrix $A[1:n, 1:n]$ where

$$A[i, j] = \begin{cases}
1 & (i, j) \in E \\
0 & (i, j) \notin E
\end{cases}$$

Cost

Space: $\Theta(n^2)$

Lookup (u, v): $\Theta(1)$ time

List Neighbors of u: $\Theta(n)$ time
Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
 - $A_{out}[v]$ of all u s.t. $(v, u) \in E$
 - $A_{in}[v]$ of all u s.t. $(u, v) \in E$

```
A_{out}[1] = \{2, 3\} \hspace{1cm} A_{in}[1] = \{\}\]
A_{out}[2] = \{3\} \hspace{1cm} A_{in}[2] = \{1\}
A_{out}[3] = \{\} \hspace{1cm} A_{in}[3] = \{1, 2, 4\}
A_{out}[4] = \{3\} \hspace{1cm} A_{in}[4] = \{\}
```
Adjacency-List Representation

• The **adjacency list** of a vertex \(v \in V\) is the list \(A[v]\) of all the neighbors of \(v\)

\[
\begin{align*}
A[1] &= \{2,3\} \\
A[2] &= \{1,3\} \\
A[3] &= \{1,2,4\} \\
\end{align*}
\]

Cost

Space: \(\Theta(n + m)\)

Lookup \((u,v)\): \(\Theta(\text{deg}(u) + 1)\) time

List Neighbors of \(u\): \(\Theta(\text{deg}(u) + 1)\) time

![Diagram](image-url)
Topics to Review

• Finding (short) paths in graphs
 • BFS for finding:
 • Connected components
 • Strongly connected components
 • Shortest paths in unweighted graphs (i.e. fewest hops)
 • Dijkstra’s algorithm for finding:
 • Shortest paths in graphs with non-negative lengths
 • Bellman-Ford algorithm for finding:
 • Shortest paths in graphs with negative lengths (no neg cycles)
 • Negative cycles if they exist
• Structural properties of shortest paths
 • Dynamic programming \(\forall (u,v) \in E, \ d(s,v) \leq d(s,u) + l(u,v) \)
 • Shortest path trees
BFS

• Informal Description: start at s, find all neighbors of s, find all neighbors of neighbors of s, ...

• BFS Algorithm:
 • $L_0 = \{s\}$
 • $L_1 = \text{all neighbors of } L_0$
 • $L_2 = \text{all neighbors of } L_1 \text{ that are not in } L_0, L_1$
 • ...
 • $L_d = \text{all neighbors of } L_{d-1} \text{ that are not in } L_0, \ldots, L_{d-1}$
 • Stop when L_{d+1} is empty.
Breadth-First Search Implementation

\[
\text{BFS}(G = (V,E), s):
\]
\[
\begin{align*}
\text{Let } & \text{ found}[v] \leftarrow \text{false} \quad \forall v, \text{ found}[s] \leftarrow \text{true} \\
\text{Let } & \text{ layer}[v] \leftarrow \infty \quad \forall v, \text{ layer}[s] \leftarrow 0 \\
\text{Let } & i \leftarrow 0, \ L_0 = \{s\}, \ T \leftarrow \emptyset \\
\text{While (}L_i\text{ is not empty):} & \\
\ & \text{Initialize new layer } L_{i+1} \\
\ & \text{For (u in } L_i\text{):} \\
\ & \quad \text{For ((u,v) in } E\text{):} \\
\ & \quad \quad \text{If (found[v] = false):} \\
\ & \quad \quad \quad \text{found}[v] \leftarrow \text{true}, \ \text{layer}[v] \leftarrow i+1 \\
\ & \quad \quad \quad \text{Add (u,v) to } T \text{ and add } v \text{ to } L_{i+1} \\
\ & \quad \quad i \leftarrow i+1
\end{align*}
\]
Implementing Dijkstra

\textbf{Dijkstra}(G = (V,E,\{\ell(e)\}, s):
\begin{itemize}
 \item \(d[s] \leftarrow 0\), \(d[u] \leftarrow \infty\) for every \(u \neq s\)
 \item \(\text{parent}[u] \leftarrow \perp\) for every \(u\)
 \item \(Q \leftarrow V\) // \(Q\) holds the unexplored nodes
\end{itemize}

While (\(Q\) is not empty):
\begin{itemize}
 \item \(u \leftarrow \text{argmin}_{w \in Q} d[w]\) //Find closest unexplored
 \item Remove \(u\) from \(Q\)
\end{itemize}

// Update the neighbors of \(u\)
\begin{itemize}
 \item For ((\(u,v\)) in E):
 \begin{itemize}
 \item If (\(d[v] > d[u] + \ell(u,v)\)):
 \begin{itemize}
 \item \(d[v] \leftarrow d[u] + \ell(u,v)\)
 \item \(\text{parent}[v] \leftarrow u\)
 \end{itemize}
 \end{itemize}
\end{itemize}

Return (\(d\), \(\text{parent}\))
Recurrence

- **Subproblems:** \(\text{OPT}(v, j) \) is the length of the shortest \(s \leadsto v \) path with at most \(j \) hops
- **Case u:** \((u, v)\) is final edge on the shortest \(s \leadsto v \) path with at most \(j \) hops

Recurrence:

\[
\text{OPT}(v, j) = \min \left\{ \text{OPT}(v, i - 1), \min_{(u,v) \in E} \left\{ \text{OPT}(u, i - 1) + \ell_{u,v} \right\} \right\}
\]

\(\text{OPT}(s, j) = 0 \) for every \(j \)

\(\text{OPT}(v, 0) = \infty \) for every \(v \)
Implementation (Bottom Up)

Shortest-Path(G, s)

foreach node v ∈ V
 M[0,v] ← ∞
 P[0,v] ← φ
 M[0,s] ← 0

for i = 1 to n-1
 foreach node v ∈ V
 M[i,v] ← M[i-1,v]
 P[i,v] ← P[i-1,v]
 foreach edge (v, w) ∈ E
 if (M[i-1,w] + ℓ_{wv} < M[i,v])
 M[i,v] ← M[i-1,w] + ℓ_{wv}
 P[i,v] ← w
Topics to Review

- Depth-First Search
 - Types of edges (tree, forward, backward, cross)
 - Post-ordering (Pre-ordering)
- Topological Sort
 - Fast algorithm using DFS
- Other graph algorithms
 - 2-coloring
Depth-First Search

$G = (V,E)$ is a graph
$\text{explored}[u] = 0 \ \forall u$

DFS(u):
$\text{explored}[u] = 1$

for ((u, v) in E):
 if ($\text{explored}[v]$ = 0):
 $\text{parent}[v] = u$
 DFS(v)
Depth-First Search

- **Fact:** The parent-child edges form a (directed) tree
- **Each edge has a type:**
 - **Tree edges:** $(u, a), (u, c), (c, b)$
 - These are the edges that explore new nodes
 - **Forward edges:** (u, b)
 - Ancestor to descendant
 - **Backward edges:** (a, u)
 - Descendant to ancestor
 - **Cross edges:** (c, a)
 - No ancestral relation
Post-Ordering

G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
 explored[u] = 1
 for ((u,v) in E):
 if (explored[v]=0):
 parent[v] = u
 DFS(v)
 post-visit(u)

• Maintain a counter clock, initially set clock = 1
• post-visit(u):
 set postorder[u]=clock, clock=clock+1

```
<table>
<thead>
<tr>
<th>Vertex</th>
<th>Post-Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Vertex Post-Order

The reverse of a postorder is a topological order.
Directed Acyclic Graphs (DAGs)

- **DAG**: A directed graph with no directed cycles
- DAGs represent **precedence** relationships

A topological ordering of a directed graph is a labeling of the nodes from v_1, \ldots, v_n so that all edges go “forwards”, that is $(v_i, v_j) \in E \Rightarrow j > i$

- G has a topological ordering $\iff G$ is a DAG
- Reverse of post-order is a topological ordering
Topics to Review

• Minimum Spanning Trees
 • Cut Property / Cycle Property
 • Four Algorithms:
 • Boruvka
 • Prim
 • Kruskal
 • Anti-Kruskal
Cycles and Cuts

• **Cycle:** a set of edges \((v_1, v_2), (v_2, v_3), \ldots, (v_k, v_1)\)

\[
\text{Cycle } C = (1,2), (2,3), (3,4), (4,5), (5,6), (6,1)
\]

• **Cut:** a subset of nodes \(S\)

\[
\text{Cut } S = \{4, 5, 8\}
\]
\[
\text{Cutset } = (5,6), (5,7), (3,4), (3,5), (7,8)
\]
Properties of MSTs

- **Assuming edge weights are distinct**
- **Cut Property**: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 - We call such an e a safe edge

- **Cycle Property**: Let C be a cycle. Let e be the maximum weight edge in C. Then the MST T^* does not contain e.
 - We call such an e a useless edge
MST Algorithms

• There are at least four reasonable MST algorithms
 • Borůvka’s Algorithm: start with \(T = \emptyset \), in each round add cheapest edge out of each connected component
 • Prim’s Algorithm: start with some \(s \), at each step add cheapest edge that grows the connected component
 • Kruskal’s Algorithm: start with \(T = \emptyset \), consider edges in ascending order, adding edges unless they create a cycle
 • Reverse-Kruskal: start with \(T = E \), consider edges in descending order, deleting edges unless it disconnects
Topics to Review

- Network Flow
 - Definitions (Flows, Cuts, Augmenting Path, Residual Graph)
 - Ford-Fulkerson Algorithm
 - Algorithm
 - Correctness
 - Running time analysis
 - Methods for choosing good augmenting paths (but not proofs)
 - MaxFlow-MinCut Theorem

- We can compute a max flow in $O(mn)$ time
Flows

• An s-t flow is a function $f(e)$ such that
 • For every $e \in E$, $0 \leq f(e) \leq c(e)$ (capacity)
 • For every $v \in E$, $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

• The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$
Cuts

- An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\)

- The capacity of a cut \((A, B)\) is \(\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)\)
Ford-Fulkerson Algorithm

- Start with $f(e) = 0$ for all edges $e \in E$
- Find an **augmenting path** P in the **residual graph**
- Repeat until you get stuck
Ford-Fulkerson Algorithm

FordFulkerson(G, s, t, {c})
 for e ∈ E: f(e) ← 0
 G_f is the residual graph

 while (there is an s-t path P in G_f)
 f ← Augment(G_f, P)
 update G_f

 return f

Augment(G_f, P)
 b ← the minimum capacity of an edge in P
 for e ∈ P
 if e ∈ E: f(e) ← f(e) + b
 else: f(e) ← f(e) - b
 return f

O(m) time per aug path
Review Problems
Review Question:

Given a flow network $G = (V, E, s, t, \{c(e)\})$ and a maximum flow f^*, find all edges $e \in E$ s.t. increasing $c(e)$ by 1 will increase the value of the maximum flow.

How would increasing $c(e)$ by 1 change the residual graph:

- If $f^*(e) < c(e)$, then the edge was already in the residual graph.

- If $f^*(e) = c(e)$, then increasing capacity by 1 puts e back in the residual graph.
 - Increase the max flow iff u is reachable from s, t is reachable from v. ($e = (u, v)$)
Pseudocode

- Let L be all nodes reachable from s in G_{fa}
- Let R be all nodes reachable from t in G_{fa} (using edge backwards)
- $S = \emptyset$
- For $(u,v) \in E$
 - If $(u \in L \land v \in R)$:
 - add (u,v) to S

- Output S

\[
\text{max val}(f) = \min_{(A,B)} \text{cap}(A,B)
\]
Bonus Review Problem

• Prove the following by induction: in any rooted binary tree, the number of nodes with exactly two children is one less than the number of leaves.
Review Problem #4

- Design an algorithm that takes an undirected $G = (V, E)$, and a pair of nodes s, t and outputs the number of shortest $s-t$ paths in G.
Review Problem #5

• Design an algorithm to find a fattest s-t path in a flow network $G = (V, E, s, t, \{c(e)\})$
Review Problem #6

• There are n bank accounts A_1, \ldots, A_n, and you are given m constraints of the form
 • A_i was closed before A_j opened
 • A_i and A_j were open (at least partially) simultaneously
• Design an algorithm to determine if there are opening and closing times for the accounts that satisfy all constraints
Review Problem #7

• Prove the following by contradiction: if G is an undirected simple graph with $2n$ nodes, and every node has degree $\geq n$, then G is connected.
Problem 1. DFS and Topological Ordering

Consider running depth-first search on this graph starting from node a. When there are multiple choices for the next node to visit, go in alphabetical order.

(a) Label every edge as either tree, forward, backward, or cross.

Solution:

(b) Give the post-order numbers of all vertices

Solution:

(c) Is this graph a DAG? Support your answer by either showing a topological ordering or a directed cycle.

Solution: