Lecture 18:
• Network Flow: choosing good paths

Nov 9, 2018
Flow Networks

• Directed graph $G = (V, E)$
• Two special nodes: source s and sink t
• Edge capacities $c(e)$

![Flow Network Diagram]
Flows

• An s-t flow is a function $f(e)$ such that
 • For every $e \in E$, $0 \leq f(e) \leq c(e)$ (capacity)
 • For every $v \in E$, $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

• The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$
Maximum Flow Problem

• Given $G = (V,E,s,t,\{c(e)\})$, find an s-t flow of maximum value
Cuts

• An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$

• The capacity of a cut (A,B) is $\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)$
Minimum Cut problem

- Given $G = (V,E,s,t,\{c(e)\})$, find an s-t cut of minimum capacity
Flows vs. Cuts

Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \text{val}(f)
\]

![Graph diagram](image-url)
Ford-Fulkerson Algorithm

• Start with $f(e) = 0$ for all edges $e \in E$
• Find an **augmenting path** P in the residual graph
• Repeat until you get stuck
original graph

\[\text{f(e)} / \text{c(e)} \]

residual graph

\[\text{c(e)} - \text{f(e)} \]

(remove edges of capacity 0)
Summary

- The **Ford-Fulkerson Algorithm** solves maximum s-t flow
 - Running time is $O(m)$ per augmentation step
 - $O(val(f^*))$ augmentations in any graph with integer capacities

- **MaxFlow-MinCut Theorem:** The value of the max s-t flow equals the capacity of the min s-t cut
 - If f^* is a max flow, the nodes reachable from s in G_{f^*} are a min cut
 - Given a max flow, can find a min cut in time $O(n + m)$ via BFS

![Diagram](image)

$A = \{s, 1, 2\}$

$B = \{2, 3, 4, t\}$
Ask the Audience

• Is this a maximum flow? Yes

cap = 2

s

1

1

1

1

1

1

1

a

1

1

b

1.5

2

c

0.5

1

d

0.5

1

t

0.5

1
Ask the Audience

• Is this a maximum flow?

• Is there an integer maximum flow?

\[(A \text{ max flow where } f(e) \in \mathbb{Z} \text{ for every } e \in E)\]
Ask the Audience

• Is this a maximum flow?

• Is there an integer maximum flow?

• Does every graph with integer capacities have an integer maximum flow?

Yes! And Ford–Fulkerson finds one.
Summary

• The **Ford-Fulkerson Algorithm** solves maximum s-t flow
 • Running time is $O(m)$ per augmentation step
 • $O(val(f^*))$ augmentations in any graph with integer capacities

• **MaxFlow-MinCut Theorem:** The value of the max s-t flow equals the capacity of the min s-t cut
 • If f^* is a max flow, the nodes reachable from s in G_{f^*} are a min cut
 • Given a max flow, can find a min cut in time $O(n + m)$ via BFS

• Every graph with integer capacities has an integer max flow
 • And Ford-Fulkerson finds an integer max flow
Ford-Fulkerson Algorithm

• Start with $f(e) = 0$ for all edges $e \in E$
• Find an **augmenting path** P in the **residual graph**
• Repeat until you get stuck

$\text{val}(f^*) = 2C$

C is a really big #
Choosing Good Augmenting Paths

• **Last time:** arbitrary augmenting paths
 • If FF terminates, it outputs a maximum flow
 • Might not terminate, or might require many augmentations

• **Today:** clever augmenting paths
 • Maximum-capacity augmenting path (“fattest augmenting path”)
 • Shortest augmenting paths (“shortest augmenting path”)

Fattest Augmenting Path
Fattest Augmenting Path

• Maximum-capacity augmenting path

\[P^* = \arg \max_{P \in G_f} \text{bottleneck capacity}(P) \]

• Can find the fattest augmenting path in time \(O(m \log n) \) in several different ways
 • Variants of Prim’s or Kruskal’s MST algorithms
 • BFS + binary search

• Not too much slower than choosing an arbitrary path
Fattest Augmenting Path

Arbitrary Paths

• Assume integer capacities

• Value of maxflow: ν^*

• Value of aug path: ≥ 1

• Flow remaining in G_f: $\leq \nu^* - 1$

• # of aug paths: $\leq \nu^*$

$\nu^* - k > 0$

$k \leq \nu^*$

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: ν^*

• Value of aug path:

• Flow remaining in G_f:

• # of aug paths:
Fattest Augmenting Path

- f^* is a maximum flow with value $v^* = \text{val}(f^*)$
- P is a fattest augmenting s-t path with capacity b
- **Key Claim:** $b \geq \frac{v^*}{m}$

```
```

\[
b \geq \frac{v^*}{m}
\]

```
```

- capacity of the fattest path

\[
\geq \frac{\text{max flow}}{\# \text{of edges}}
\]
Fattest Augmenting Path

• f^* is a maximum flow with value $v^* = val(f^*)$
• P is a fattest augmenting s-t path with capacity b
• **Key Claim:** $b \geq \frac{v^*}{m}$
• **Proof:**
 • \exists a path of capacity $b+1$
 • Let G' be G but only with edges s.t. $c(e) > b+1$
 • G' doesn't contain any s-t path

\[v^* \leq \text{cap}(A, B) \leq b \cdot m \]
\[\frac{3}{5} b \leq b \]

\[A = \{ \text{nodes reachable from } s \text{ in } G' \} \]
\[\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e) \leq b \cdot (\# \text{ of } e \text{ out of } A) \leq b \cdot m \]
Fattest Augmenting Path

• f^* is a maximum flow with value $v^* = val(f^*)$
• P is a fattest augmenting s-t path with capacity b
• **Key Claim:** $b \geq \frac{v^*}{m}$
Fattest Augmenting Path

Arbitrary Paths

- Assume integer capacities

- Value of maxflow: \(v^* \)
- Value of aug path: \(\geq 1 \)
- Flow remaining in \(G_f \): \(\leq v^* - 1 \)
- # of aug paths: \(\leq v^* \)

- If there are \(k \) aug. paths then after adding \(k \) paths the flow was at least 1.
- Flow remaining after \(k \) paths: \(\leq \left(1 - \frac{1}{m} \right)^k \cdot v^* \)

Maximum-Capacity Path

- Assume integer capacities

- Value of maxflow: \(v^* \)
- Value of aug path: \(\geq \frac{v^*}{m} \)
- Flow remaining in \(G_f \): \(\leq \left(1 - \frac{1}{m} \right) \cdot v^* \)
- # of aug paths:
• \((1 - \frac{1}{m})^k \cdot \nu^* \geq 1\)

\[\left[(1 - \frac{1}{m})^m\right]^k \cdot \nu^* \geq 1\]

\((e^{-1})^k \cdot \nu^* \geq 1\)

\(e^{-\frac{k}{m}} \cdot \nu^* \geq 1\)

\(-\frac{k}{m} + \ln(\nu^*) \geq 0\)

\(k \leq m \cdot \ln(\nu^*)\)

\[\Rightarrow \text{# of paths} \leq m \cdot \ln(\nu^*) + 1\]
Choosing Good Paths

• **Last time:** arbitrary augmenting paths
 • If FF terminates, it outputs a maximum flow
 • Bad paths ⇒ FF never terminates

• **Today:** clever augmenting paths
 • Maximum-capacity augmenting path ("fattest augmenting path")
 • $\leq m \ln \nu^*$ augmenting paths (assuming integer capacities)
 • $O(m^2 \ln n \ln \nu^*)$ total running time
 • See KT for a slightly faster variant ("fat-ish augmenting path"?)

• Shortest augmenting paths ("shortest augmenting path")
 • # of augmenting paths $\leq \frac{mn}{2}$ for any capacities
 • $O(m^2n)$ total running
Shortest Augmenting Path
Shortest Augmenting Path

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in $O(m)$ time using BFS

- **Theorem:** for any capacities $\frac{nm}{2}$ augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!

- **Warning:** proof is challenging (you will not be tested on it)
Shortest Augmenting Path

- Let f_i be the flow after the i-th augmenting path
- Let $G_i = G_{f_i}$ be the i-th residual graph
- Let $L_i(v)$ be the distance from s to v in G_i
 - Recall that the shortest path in G_i moves layer-by-layer
Shortest Augmenting Path

• Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear.

 • Some edge on the augmenting path G_i is now at capacity, is not in G_{i+1}.

• **Key Property:** each edge disappears at most $\frac{n}{2}$ times.
 • Means that there are at most $\frac{mn}{2}$ augmentations.
Shortest Augmenting Path

• **Claim 1:** for every \(v \in V \) and every \(i, L_{i+1}(v) \geq L_i(v) \)
 • Obvious for \(v = s \) because \(L_i(s) = 0 \)
 • Suppose for the sake of contradiction that \(L_{i+1}(v) < L_i(v) \)
 • Let \(v \) be the smallest such node
 • Let \(s \leadsto u \to v \) be a shortest path in \(G_{i+1} \)
 • By optimality of the path, \(L_{i+1}(v) = L_{i+1}(u) + 1 \)
 • By assumption, \(L_{i+1}(u) \geq L_i(u) \)
 • Two Cases:
 • \((u,v) \in G_i \), so \(L_i(v) \leq L_i(u) + 1 \)
 • \((u,v) \notin G_i \), so \((v,u) \) was in the \(i \)-th path, so \(L_i(v) = L_i(u) - 1 \)
Shortest Augmenting Path

- **Claim 2:** If an edge $u \to v$ disappears from G_i and reappears in G_{j+1} then $L_j(u) \geq L_i(u) + 2$
 - $u \to v$ is on the i-th augmenting path, $L_i(v) = L_i(u) + 1$
 - $v \to u$ is on the j-th augmenting path, $L_j(u) = L_j(v) + 1$
 - By Claim 1: $L_j(v) \geq L_i(v)$

- **Claim 3:** An edge (u, v) cannot reappear more than $\frac{n}{2}$ times
 - $0 \leq L_i(u) \leq n$
 - By Claim 2: length increases by 2 for each reappearance
Choosing Good Paths

• **Last time:** arbitrary augmenting paths
 • If FF terminates, it outputs a maximum flow

• **Today:** clever augmenting paths
 • Maximum-capacity augmenting path (“fattest augmenting path”)
 • \(\leq m \ln v^* \) augmenting paths (assuming integer capacities)
 • \(O(m^2 \ln n \ln v^*) \) total running time
 • See KT for a slightly faster variant (“fat-ish augmenting path”?)

• Shortest augmenting paths (“shortest augmenting path”)
 • \(\leq \frac{mn}{2} \) augmenting paths (for any capacities)
 • \(O(m^2 n) \) total running time

• State-of-the-Art algorithms have \(O(mn) \) time for any capacities.