Lecture 16:
• Minimum Spanning Trees

Nov 2, 2018
Minimum Spanning Trees
Network Design

• **Build a cheap, well connected network** (= graph)
• We are given
 • a set of nodes \(V = \{v_1, \ldots, v_n\} \)
 • a set of possible edges \(E \subseteq V \times V \)
• Want to build a network to connect these locations
 • Every \(v_i, v_j \) must be connected
 • Must be as **cheap** as possible

• Many variants of network design
 • Recall the bus routes problem from HW2
Minimum Spanning Trees (MST)

• **Input**: a weighted graph \(G = (V, E, \{w_e\}) \)
 - Undirected, connected, weights may be negative
 - All edge weights are distinct (makes life simpler)

• **Output**: a spanning tree \(T \) of minimum cost
 - A spanning tree of \(G \) is a subset of \(T \subseteq E \) of the edges such that \((V, T) \) forms a tree (connected, acyclic)
 - Cost of a spanning tree \(T \) is the sum of the edge weights
 \[
 \text{cost}(T) = \sum_{e \in T} w(e)
 \]

\[\text{MST}: \quad T^* \in \arg\min_{\text{trees } T} \text{cost}(T)\]
Minimum Spanning Trees (MST)
Minimum Spanning Trees (MST)
MST Algorithms

• There are at least four reasonable MST algorithms

 • **Borůvka’s Algorithm**: start with $T = \emptyset$, in each round add cheapest edge out of each connected component

 • **Prim’s Algorithm**: start with some s, at each step add cheapest edge that grows the connected component

 • **Kruskal’s Algorithm**: start with $T = \emptyset$, consider edges in ascending order, adding edges unless they create a cycle

 • **Reverse-Kruskal**: start with $T = E$, consider edges in descending order, deleting edges unless it disconnects
Cycles and Cuts

- **Cycle**: a set of edges $(v_1, v_2), (v_2, v_3), ..., (v_k, v_1)$

 ![Cycle Example]

 Cycle $C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)$

- **Cut**: a subset of nodes S

 ![Cut Example]

 Cutset $S = \{4, 5, 8\}$
 "Edges cut by S"
Cycles and Cuts

• **Fact:** a cycle and a cutset intersect in an even number of edges

\[
| \text{Cut} \cap C | = 0
\]

\[
| \text{Cut} \cap C | = 2
\]

\[
| \text{Cut} \cap C | = 4
\]

"Every time I leave S, I must come back."
Properties of MSTs

• **Cut Property:** Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 • We call such an e a **safe edge**

• **Cycle Property:** Let C be a cycle. Let f be the maximum weight edge in C. Then the MST T^* does not contain f.
 • We call such an f a **useless edge**
Proof of Cut Property

- **Cut Property**: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e

- **Proof by Contradiction**:
 - Let T^* be an MST, $e \notin T^*$
 - There is some $f \in T^*$ that is also in $\text{Cutset}(S)$
 - $w(f) > w(e)$ because e is a safe edge for cut S

\[
\Rightarrow \text{cost}(T^* - \{f\} + \{e\}) < \text{cost}(T^*)
\]
Proof of Cut Property

• **Cut Property**: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e

• $T^* - \{f, 3\} + \{e, 3\}$ is a spanning tree
 - $T^* - \{f, 3\}$ has two connected components, S and S^c
 - e bridges S and S^c

• Then T^* is not an MST, contradiction.
Proof of Cycle Property

- **Cycle Property**: Let C be a cycle. Let f be the max weight edge in C. The MST T^* does not contain f.

- **Proof by contradiction**:
 - Assume T^* is an MST, $f \notin T^*$
 - $T^* - \{f\}$ has two connected components S, S^c
 - C intersects $\text{Cutset}(S)$ in an even number of edges.
 $$\Rightarrow$$ there is an $e \in C$ and $e \in \text{Cutset}$
 $$\Rightarrow$$ $\omega(e) < \omega(f)$
Proof of Cycle Property

- **Cycle Property:** Let C be a cycle. Let f be the max weight edge in C. The MST T^* does not contain e.

 - $\text{cost}(T^* - \{f\} + \{e\}) < \text{cost}(T^*)$
 - $T^* - \{f\} + \{e\}$ is spanning tree
 - But then T^* is not an MST, contradiction.
Ask the Audience

• Assume G has distinct edge weights

• **True/False?** If e is the edge with the smallest weight, then e is always in the MST T^*

• **True/False?** If e is the edge with the largest weight, then e is never in the MST T^*

e is the safe edge for $S = \{u\}$
Ask the Audience

• Assume G has distinct edge weights

• **True/False?** If e is the edge with the smallest weight, then e is always in the MST T^*

• **True/False?** If e is the edge with the largest weight, then e is never in the MST T^*

what if there is only one edge?
The “Only” MST Algorithm

• **GenericMST:**
 • Let $T = \emptyset$
 • Repeat until T is connected:
 • Find one or more safe edges not in T
 • Add safe edges to T

• **Theorem:** **GenericMST** outputs an MST

 Proof:
 1. We only add safe edges
 2. If T not connected, then there exists a safe edge
Suppose T is not connected.

There must be edges between each component or else E is not connected.

\Rightarrow there is some edge in the cut C_i.

\Rightarrow there is a safe edge in the cut C_i.

Borůvka’s Algorithm

Borůvka:

1. Let $T = \emptyset$
2. Repeat until T is connected:
 1. Let $C_1, ..., C_k$ be the connected components of (V, T)
 2. Let $e_1, ..., e_k$ be the safe edge for the cuts $C_1, ..., C_k$
 3. Add $e_1, ..., e_k$ to T

Correctness: every edge we add is safe
Borůvka’s Algorithm

Initially $T = \emptyset$

Label Connected Components of the graph (V, T)
Borůvka’s Algorithm

Add Safe Edges

Diagram:

- Nodes: 1, 2, 3, 4, 5, 6, 7, 8
- Edges:
 - 1 to 2, weight 6
 - 2 to 3, weight 14
 - 2 to 4, weight 3
 - 3 to 4, weight 8
 - 4 to 5, weight 10
 - 5 to 6, weight 15
 - 5 to 7, weight 7
 - 6 to 7, weight 9

The algorithm would start by selecting the minimum weight edge from each node to its nearest neighbor. In this case, it would add the edges 1-2, 2-3, and 2-4 as the initial set of safe edges.
Borůvka’s Algorithm

Label Connected Components
Borůvka’s Algorithm

Add Safe Edges
Borůvka’s Algorithm

Done!
Borůvka’s Algorithm (Running Time)

• **Borůvka**
 • Let $T = \emptyset$
 • Repeat until T is connected:
 • Let C_1, \ldots, C_k be the connected components of (V, T)
 • Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_m
 • Add e_1, \ldots, e_k to T

• **Running time**
 • How long to find safe edges?
 • How many times through the main loop?
Borůvka’s Algorithm (Running Time)

FindSafeEdges(G,T):

find connected components \(C_1, ..., C_k \)

let \(L[v] \) be the component of node \(v \)

Let \(S[i] \) be the safe edge of \(C_i \)

for each edge \((u,v)\) in \(E\):

If \(L[u] \neq L[v] \):

If \(w(u,v) < w(S[L[u]]) \):

\(S[L[u]] = (u,v) \)

If \(w(u,v) < w(S[L[v]]) \):

\(S[L[v]] = (u,v) \)

Return \(\{S[1],...,S[k]\} \) (Remove duplicates)

Running Time to find safe edges is \(O(m) \)
Borůvka’s Algorithm (Running Time)

• **Claim:** every iteration of the main loop halves the number of connected components.

• \[\Rightarrow \text{# of iterations is } O(\log n) \]

• **“Proof”**

 After iteration \(i \), we have components \(C_1, \ldots, C_k \)

 ![Diagram showing the halving of connected components](image)

 Iteration \(i+1 \), each component contains at least two previous components

 \[
 \frac{\text{# comp's after } i+1}{\text{# of comp's after } i} \leq \frac{1}{2}
 \]
Borůvka’s Algorithm (Running Time)

Borůvka
- Let $T = \emptyset$
- Repeat until T is connected:
 - Let C_1, \ldots, C_k be the connected components of (V, T)
 - Let e_1, \ldots, e_k be the safe edge for the cuts C_1, \ldots, C_m
 - Add e_1, \ldots, e_k to T

Running Time:
- How long to find safe edges? $O(m)$
- How many times through the main loop? $O(\log n)$

Total time: $O(m \log n)$
Prim’s Algorithm

• **Prim Informal**
 • Let $T = \emptyset$
 • Let s be some arbitrary node and $S = \{s\}$
 • Repeat until $S = V$
 • Find the cheapest edge $e = (u, v)$ cut by S. Add e to T and add v to S

• **Correctness:** every edge we add is safe
Prim’s Algorithm

Prim(G=(V,E))

- let Q be a priority queue storing V
- value[v] ← ∞, last[v] ← ⊥
- value[s] ← 0 for some arbitrary s

while (Q ≠ ∅):
 - u ← ExtractMin(Q)
 - for each edge (u,v) in E:
 - if v ∈ Q and w(u,v) < value[v]:
 - DecreaseKey(v,w(u,v))
 - last[v] ← u

T = {(1,last[1]),..., (n,last[n])} (excluding s)

return T
Kruskal’s Algorithm

• **Kruskal’s Informal**
 • Let $T = \emptyset$
 • For each edge e in ascending order of weight:
 • If adding e would decrease the number of connected components add e to T

• **Correctness:** every edge we add is safe
Claim: Every edge added by Kruskal is a safe edge.

Proof: Consider some edge e, added by Kruskal, when we considered e, the T looked like

There are other edges leaving the cut C_1, suppose e were not the minimum. If $w(f) < w(e)$ then we already considered f. Why didn’t we add f? At the time we considered f, its endpoints were also in two different components. But then we would have added f!

So there is no $f \in \text{Cut}(C_1)$ st. $w(f) < w(e)$.
Kruskal’s Algorithm
Implementing Kruskal’s Algorithm

• **Union-Find**: group items into components so that we can efficiently perform two operations:
 • Find(u): lookup which component contains u
 • Union(u,v): merge connected components of u,v

• Can implement **Union-Find** so that
 • Find takes $O(1)$ time
 • Any k Union operations takes $O(k \log k)$ time

• Naïve Implementation is an array
 • Find takes $O(1)$ time
 • Union can take $O(n)$ time
Kruskal’s Algorithm (Running Time)

• **Kruskal’s Informal**
 - Let $T = \emptyset$
 - For each edge e in ascending order of weight:
 - If adding e would decrease the number of connected components add e to T

• Time to sort: $O(m \log m)$
• Time to test edges: $2m$ find operations $\rightarrow O(m)$ time
• Time to add edges: $n-1$ union operations $\rightarrow O(n \log n)$ time

Total time is $O(m \log m)$
Implementing Union Find

1. Maintain an array with the component of each item

 \[\begin{array}{cccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \end{array} \]

 \[\text{\textsc{Union}}(5, 7) \]

 \[\begin{array}{cccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 1 & 2 & 3 & 4 & 5 & 6 & 5 \\
 \end{array} \]

 \(\text{Find} = O(1) \), \(\text{Union} = O(n) \)

2. For every component, maintain a linked list of the items in that component

 \[\begin{array}{cccc}
 1 & 1 & \text{T} \\
 2 & 2 & \text{T} \\
 3 & 3 & \text{T} \\
 \end{array} \]

 \[\text{\textsc{Union}}(1, 3) \]

 \[\begin{array}{cccc}
 1 & 1 & \text{T} \rightarrow \text{T} & \text{T} \\
 2 & 2 & \text{T} & \text{T} \\
 3 & 3 & \text{T} & \text{T} \\
 \end{array} \]

 \[\vdots \]

 \(\text{\textsc{Union}}(i, j) \) takes time = to size of component \(j \)
(3) Keep the size of each component, merge the smaller into the bigger.

Claim: k unions takes $O(k \log k)$ time.

Pf:
1. After k unions only $O(k)$ items have changed component at all.
2. The largest component has size $O(k)$.
3. Every time an item changes component, the size of its component doubles.
 \[\Rightarrow \text{no item changed component more than } O(\log k) \text{ times}\]

\[
\therefore \text{Total changes of component is } O(k \log k)
\]
Comparison

• **Boruvka’s Algorithm:**
 • Only algorithm worth implementing
 • Low overhead, can be easily parallelized
 • Each iteration takes $O(m)$, very few iterations in practice

• **Prim’s/Kruskal’s Algorithms:**
 • Reveal useful structure of MSTs
 • Running time dominated by a single sort