Lecture 12:
• Applications of BFS: 2-Coloring, Connected Components, Topological Sort

Oct 19, 2018
Recap: Graphs/BFS
Graphs: Key Definitions

• **Definition:** A directed graph \(G = (V, E) \)
 - \(V \) is the set of nodes/vertices, \(|V| = n \)
 - \(E \subseteq V \times V \) is the set of edges, \(|E| = m \)
 - An edge is an ordered \(e = (u, v) \) “from \(u \) to \(v \)”

• **Definition:** An undirected graph \(G = (V, E) \)
 - Edges are unordered \(e = (u, v) \) “between \(u \) and \(v \)”

• **Simple Graph:**
 - No duplicate edges
 - No self-loops \(e = (u, u) \)
Breadth-First Search (BFS)

- **Definition:** the distance between \(s, t \) is the number of edges on the shortest path from \(s \) to \(t \).
- **Thm:** BFS finds distances from \(s \) to other nodes.
 - \(L_i \) contains all nodes at distance \(i \) from \(s \).
 - Nodes not in any layer are not reachable from \(s \).

![Diagram of BFS](image)
Adjacency Matrices

- The **adjacency matrix** of a graph $G = (V, E)$ with n nodes is the matrix $A[1:n, 1:n]$ where

$$A[i,j] = \begin{cases}
1 & (i, j) \in E \\
0 & (i, j) \notin E
\end{cases}$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cost
Space: $\Theta(n^2)$

Lookup: $\Theta(1)$ time
List Neighbors: $\Theta(n)$ time
Adjacency Lists (Undirected)

• The **adjacency list** of a vertex \(v \in V \) is the list \(A[v] \) of all \(u \) s.t. \((v, u) \in E \)

\[
\begin{align*}
A[1] &= \{2, 3\} \\
A[2] &= \{1, 3\} \\
A[3] &= \{1, 2, 4\} \\
\end{align*}
\]

Cost

- **Space:** \(\Theta(n + m) \)

- **Lookup:** \(\Theta(\deg(u) + 1) \) time

- **List Neighbors:** \(\Theta(\deg(u) + 1) \) time
Breadth-First Search Implementation

BFS\((G = (V,E), s)\):

Let \(\text{found}[v] \leftarrow \text{false} \ \forall v, \ \text{found}[s] \leftarrow \text{true}\)
Let \(\text{layer}[v] \leftarrow \infty \ \forall v, \ \text{layer}[s] \leftarrow 0\)
Let \(i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset\)

While (\(L_i\) is not empty):

Initialize new layer \(L_{i+1}\)
For (\(u\) in \(L_i\)):
For ((\(u,v\)) in \(E\)):
If (\(\text{found}[v] = \text{false}\)):
\(\text{found}[v] \leftarrow \text{true}, \ \text{layer}[v] \leftarrow i+1\)
Add \((u,v)\) to \(T\) and add \(v\) to \(L_{i+1}\)
\(i \leftarrow i+1\)

Implements BFS in \(O(n + m)\) time

If \(n_s\) is the \# of nodes reachable from \(s\)
\(m_s\) "edges"

\[\Rightarrow \text{time} \ O(n_s + m_s) \]
Bipartiteness / 2-Coloring
2-Coloring

- **Problem:** Tug-of-War Rematch
 - Need to form two teams R, P
 - Some students are still mad from last time
- **Input:** Undirected graph $G = (V, E)$
 - $(u, v) \in E$ means u, v won't be on the same team
- **Output:** Split V into two sets R, P so that no pair in either set is connected by an edge
2-Coloring (Bipartiteness)

• **Equivalent Problem:** Is the graph G bipartite?

 - A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R.

```
L
2
3
5
R
1
4
```

$L \cap R = \emptyset$

$L \cup R = V$
Designing the Algorithm

- **Key Fact:** If G contains a cycle of odd length, then G is not 2-colorable/bipartite
Designing the Algorithm

Idea for the algorithm:
- BFS the graph, coloring nodes as you find them
- Color nodes in layer i **purple** if i even, **red** if i odd
- See if you have succeeded or failed
Designing the Algorithm

- **Claim:** If BFS 2-colored the graph successfully, the graph has been 2-colored successfully

- **Key Question:** Suppose you have not 2-colored the graph successfully, maybe someone else can do it?
Designing the Algorithm

• Claim: If BFS fails, then G contains an odd cycle
 • If G contains an odd cycle then G can’t be 2-colored!
 • Example of a phenomenon called duality

• Every edge in the BFS tree is colored correctly
• Dotted edge from L_i to L_{i+1} are colored correctly

• If the 2-coloring is not correct then there is an edge from L_i to L_{i+1}
Designing the Algorithm

- **Claim:** If BFS fails, then G contains an odd cycle
 - If G contains an odd cycle then G can’t be 2-colored!
 - Example of a phenomenon called **duality**

```
Claim: If G contains an edge from L; to itself, then
G contains an odd cycle.
```

- \(w \rightarrow u \rightarrow v \rightarrow w \) is an odd cycle
 - length \(i-j \)
 - edge length \(i-j \) \(\Rightarrow \) length = \(2(i-j) + 1 \)

- There are paths of length \(i \)
 - For some node \(w \in L_j \) for \(j<i \)

- \(\exists \) an \(s \rightarrow u \) path of length \(i \)
 - \(\exists \) an \(s \rightarrow v \) path of length \(i \)
Topological Sort
Acyclic Graphs

- **Acyclic Graph**: An undirected graph with no cycles
 - Also known as a forest
 - If it’s connected then it’s known as a tree
- Can test if a graph has a cycle in $O(n + m)$ time
 - Run BFS
 - If there are any edges that are not in the BFS tree, then they form a cycle
Directed Acyclic Graphs (DAGs)

- **DAG**: A directed graph with no directed cycles
- Can be much more complex than a forest
Directed Acyclic Graphs (DAGs)

- **DAG**: A directed graph with no directed cycles
- DAGs represent **precedence** relationships

- A topological ordering of a directed graph is a labeling of the nodes from v_1, \ldots, v_n so that all edges go "forwards", that is $(v_i, v_j) \in E \Rightarrow j > i$
 - G has a topological ordering $\Rightarrow G$ is a DAG
 - G is not a DAG $\Rightarrow G$ cannot be top. ordered
Directed Acyclic Graphs (DAGs)

• **Problem 1**: given a digraph G, is it a DAG?
• **Problem 2**: given a digraph G, can it be topologically ordered?

• **Thm**: G has a topological ordering $\iff G$ is a DAG
 • We will design one algorithm that either outputs a topological ordering or finds a directed cycle
 • *Another example of duality*
Topological Ordering

- If every node has \(\geq 1 \) in-edge, then \(G \) cannot be TO'd.

- **Observation:** the first node must have no in-edges

- **Observation:** In any DAG, there is always a node with no incoming edges

Proof: Suppose every node has \(\geq 1 \) in-edge

- Consider this chain of length \(n+1 \)
- The same node must appear twice
- The node that appears twice starts and ends a directed cycle,
Topological Ordering

• **Fact:** In any DAG, there is a node with no incoming edges

• **Thm:** Every DAG has a topological ordering

• **Proof (Induction):**

 \[H(n) : \forall \text{ DAG with } n \text{ nodes, there exists a topological ordering.} \]

 • To prove: \(\forall n \in \mathbb{N} \) \(H(n) \) is true

 • Base Case: \(H(1) \) is true
Inductive Step:

- To prove: \(H(n-1) \Rightarrow H(n) \)

 - By [Fact], there exists a node \(u \) with no incoming edges, call it \(u_1 \)

 - Consider the graph \(G \setminus \{u_1, \ldots, u_n\} \), this graph is a DAG with \(n-1 \) nodes.

 - By \(H(n-1) \), there exists an ordering of \(G \setminus \{u_1, \ldots, u_n\} \), call it \(u_2, u_3, \ldots, u_n \)

 - \(u_1, u_2, \ldots, u_n \) is a TD of \(G \)

 - By induction, all edges in the box go left to right.

There are no in-edges, so all edges go left to right.
Implementing Topological Ordering

SimpleTopOrder(G):
1. Set $i \leftarrow 1$
2. Until (G has no more nodes):
 1. Find a node u with no incoming edges
 2. Label u as node i, increment $i \leftarrow i+1$
 3. Remove u and its edges from G
Implementing Topological Ordering

SimpleTopOrder(G):
 Set $i \leftarrow 1$
 Until (G has no more nodes):
 Find a node u with no incoming edges
 Label u as node i, increment $i \leftarrow i+1$
 Remove u and its edges from G
Implementing Topological Ordering

SimpleTopOrder(G):
Set \(i \leftarrow 1 \)
Until (G has no more nodes):
① Find a node \(u \) with no incoming edges
② Label \(u \) as node \(i \), increment \(i \leftarrow i+1 \)
③ Remove \(u \) and its edges from \(G \)

- Go around the loop \(n \) times
- Step ① takes \(O(n) \) time
- Step ② takes \(O(1) \) time
- Step ③ takes \(O(m) \) time

\[
n \times O(n+m) = O(n^2+nm) = O(nm)
\]
Fast Topological Ordering

\textbf{FastTopOrder}(G):

Mark all nodes with their # of in-edges
Call a node INACTIVE if it’s mark is 0
Call a node ACTIVE otherwise
Let \(i = 1 \)
Until (all node are INACTIVE):
 Let \(u \) be an INACTIVE
 Label \(u \) as node \(i \) in the top. order
 Let \(i = i + 1 \)
 For (every \((u,v)\) in E):
 Decrease \(v \)’s mark by 1
Fast Topological Ordering Example
Topological Ordering Summary

- **DAG**: A directed graph with no directed cycles
- Any DAG can be **topologically ordered**
 - There is an algorithm that either outputs a topological ordering or finds a directed cycle in time $O(n + m)$