listing 1 // Public vs private access. class MyClass { private int alpha; // private access public int beta; // public access int gamma; // default access (essentially public) /* Methods to access alpha. It is OK for a member of a class to access a private member of the same class. */ void setAlpha(int a) { alpha = a; } int getAlpha() { return alpha; } } class AccessDemo { public static void main(String args[]) { MyClass ob = new MyClass(); /* Access to alpha is allowed only through its accessor methods. */ ob.setAlpha(-99); System.out.println("ob.alpha is " + ob.getAlpha()); // You cannot access alpha like this: // ob.alpha = 10; // Wrong! alpha is private! // These are OK because beta and gamma are public. ob.beta = 88; ob.gamma = 99; } } listing 2 /* This class implements a "fail-soft" array which prevents runtime errors. */ class FailSoftArray { private int a[]; // reference to array private int errval; // value to return if get() fails public int length; // length is public /* Construct array given its size and the value to return if get() fails. */ public FailSoftArray(int size, int errv) { a = new int[size]; errval = errv; length = size; } // Return value at given index. public int get(int index) { if(ok(index)) return a[index]; return errval; } // Put a value at an index. Return false on failure. public boolean put(int index, int val) { if(ok(index)) { a[index] = val; return true; } return false; } // Return true if index is within bounds. private boolean ok(int index) { if(index >= 0 & index < length) return true; return false; } } // Demonstrate the fail-soft array. class FSDemo { public static void main(String args[]) { FailSoftArray fs = new FailSoftArray(5, -1); int x; // show quiet failures System.out.println("Fail quietly."); for(int i=0; i < (fs.length * 2); i++) fs.put(i, i*10); for(int i=0; i < (fs.length * 2); i++) { x = fs.get(i); if(x != -1) System.out.print(x + " "); } System.out.println(""); // now, handle failures System.out.println("\nFail with error reports."); for(int i=0; i < (fs.length * 2); i++) if(!fs.put(i, i*10)) System.out.println("Index " + i + " out-of-bounds"); for(int i=0; i < (fs.length * 2); i++) { x = fs.get(i); if(x != -1) System.out.print(x + " "); else System.out.println("Index " + i + " out-of-bounds"); } } } listing 3 // An improved queue class for characters. class Queue { // these members are now private private char q[]; // this array holds the queue private int putloc, getloc; // the put and get indices Queue(int size) { q = new char[size+1]; // allocate memory for queue putloc = getloc = 0; } // Put a characer into the queue. void put(char ch) { if(putloc==q.length-1) { System.out.println(" -- Queue is full."); return; } putloc++; q[putloc] = ch; } // Get a character from the queue. char get() { if(getloc == putloc) { System.out.println(" -- Queue is empty."); return (char) 0; } getloc++; return q[getloc]; } } listing 4 // Objects can be passed to methods. class Block { int a, b, c; int volume; Block(int i, int j, int k) { a = i; b = j; c = k; volume = a * b * c; } // Return true if ob defines same block. boolean sameBlock(Block ob) { if((ob.a == a) & (ob.b == b) & (ob.c == c)) return true; else return false; } // Return true if ob has same volume. boolean sameVolume(Block ob) { if(ob.volume == volume) return true; else return false; } } class PassOb { public static void main(String args[]) { Block ob1 = new Block(10, 2, 5); Block ob2 = new Block(10, 2, 5); Block ob3 = new Block(4, 5, 5); System.out.println("ob1 same dimensions as ob2: " + ob1.sameBlock(ob2)); System.out.println("ob1 same dimensions as ob3: " + ob1.sameBlock(ob3)); System.out.println("ob1 same volume as ob3: " + ob1.sameVolume(ob3)); } } listing 5 // Simple types are passed by value. class Test { /* This method causes no change to the arguments used in the call. */ void noChange(int i, int j) { i = i + j; j = -j; } } class CallByValue { public static void main(String args[]) { Test ob = new Test(); int a = 15, b = 20; System.out.println("a and b before call: " + a + " " + b); ob.noChange(a, b); System.out.println("a and b after call: " + a + " " + b); } } listing 6 // Objects are passed by reference. class Test { int a, b; Test(int i, int j) { a = i; b = j; } /* Pass an object. Now, ob.a and ob.b in object used in the call will be changed. */ void change(Test ob) { ob.a = ob.a + ob.b; ob.b = -ob.b; } } class CallByRef { public static void main(String args[]) { Test ob = new Test(15, 20); System.out.println("ob.a and ob.b before call: " + ob.a + " " + ob.b); ob.change(ob); System.out.println("ob.a and ob.b after call: " + ob.a + " " + ob.b); } } listing 7 // Return a String object. class ErrorMsg { String msgs[] = { "Output Error", "Input Error", "Disk Full", "Index Out-Of-Bounds" }; // Return the error message. String getErrorMsg(int i) { if(i >=0 & i < msgs.length) return msgs[i]; else return "Invalid Error Code"; } } class ErrMsg { public static void main(String args[]) { ErrorMsg err = new ErrorMsg(); System.out.println(err.getErrorMsg(2)); System.out.println(err.getErrorMsg(19)); } } listing 8 // Return a programmer-defined object. class Err { String msg; // error message int severity; // code indicating severity of error Err(String m, int s) { msg = m; severity = s; } } class ErrorInfo { String msgs[] = { "Output Error", "Input Error", "Disk Full", "Index Out-Of-Bounds" }; int howbad[] = { 3, 3, 2, 4 }; Err getErrorInfo(int i) { if(i >=0 & i < msgs.length) return new Err(msgs[i], howbad[i]); else return new Err("Invalid Error Code", 0); } } class ErrInfo { public static void main(String args[]) { ErrorInfo err = new ErrorInfo(); Err e; e = err.getErrorInfo(2); System.out.println(e.msg + " severity: " + e.severity); e = err.getErrorInfo(19); System.out.println(e.msg + " severity: " + e.severity); } } listing 9 // Demonstrate method overloading. class Overload { void ovlDemo() { System.out.println("No parameters"); } // Overload ovlDemo for one integer parameter. void ovlDemo(int a) { System.out.println("One parameter: " + a); } // Overload ovlDemo for two integer parameters. int ovlDemo(int a, int b) { System.out.println("Two parameters: " + a + " " + b); return a + b; } // Overload ovlDemo for two double parameters. double ovlDemo(double a, double b) { System.out.println("Two double parameters: " + a + " "+ b); return a + b; } } class OverloadDemo { public static void main(String args[]) { Overload ob = new Overload(); int resI; double resD; // call all versions of ovlDemo() ob.ovlDemo(); System.out.println(); ob.ovlDemo(2); System.out.println(); resI = ob.ovlDemo(4, 6); System.out.println("Result of ob.ovlDemo(4, 6): " + resI); System.out.println(); resD = ob.ovlDemo(1.1, 2.32); System.out.println("Result of ob.ovlDemo(1.1, 2.2): " + resD); } } listing 10 /* Automatic type conversions can affect overloaded method resolution. */ class Overload2 { void f(int x) { System.out.println("Inside f(int): " + x); } void f(double x) { System.out.println("Inside f(double): " + x); } } class TypeConv { public static void main(String args[]) { Overload2 ob = new Overload2(); int i = 10; double d = 10.1; byte b = 99; short s = 10; float f = 11.5F; ob.f(i); // calls ob.f(int) ob.f(d); // calls ob.f(double) ob.f(b); // calls ob.f(int) -- type conversion ob.f(s); // calls ob.f(int) -- type conversion ob.f(f); // calls ob.f(double) -- type conversion } } listing 11 // Add f(byte). class Overload2 { void f(byte x) { System.out.println("Inside f(byte): " + x); } void f(int x) { System.out.println("Inside f(int): " + x); } void f(double x) { System.out.println("Inside f(double): " + x); } } class TypeConv { public static void main(String args[]) { Overload2 ob = new Overload2(); int i = 10; double d = 10.1; byte b = 99; short s = 10; float f = 11.5F; ob.f(i); // calls ob.f(int) ob.f(d); // calls ob.f(double) ob.f(b); // calls ob.f(byte) -- now, no type conversion ob.f(s); // calls ob.f(int) -- type conversion ob.f(f); // calls ob.f(double) -- type conversion } } listing 12 // Demonstrate an overloaded constructor. class MyClass { int x; MyClass() { System.out.println("Inside MyClass()."); x = 0; } MyClass(int i) { System.out.println("Inside MyClass(int)."); x = i; } MyClass(double d) { System.out.println("Inside MyClass(double)."); x = (int) d; } MyClass(int i, int j) { System.out.println("Inside MyClass(int, int)."); x = i * j; } } class OverloadConsDemo { public static void main(String args[]) { MyClass t1 = new MyClass(); MyClass t2 = new MyClass(88); MyClass t3 = new MyClass(17.23); MyClass t4 = new MyClass(2, 4); System.out.println("t1.x: " + t1.x); System.out.println("t2.x: " + t2.x); System.out.println("t3.x: " + t3.x); System.out.println("t4.x: " + t4.x); } } listing 13 // Initialize one object with another. class Summation { int sum; // Construct from an int. Summation(int num) { sum = 0; for(int i=1; i <= num; i++) sum += i; } // Construct from another object. Summation(Summation ob) { sum = ob.sum; } } class SumDemo { public static void main(String args[]) { Summation s1 = new Summation(5); Summation s2 = new Summation(s1); System.out.println("s1.sum: " + s1.sum); System.out.println("s2.sum: " + s2.sum); } } listing 14 // A queue class for characters. class Queue { private char q[]; // this array holds the queue private int putloc, getloc; // the put and get indices // Construct an empty Queue given its size. Queue(int size) { q = new char[size+1]; // allocate memory for queue putloc = getloc = 0; } // Construct a Queue from a Queue. Queue(Queue ob) { putloc = ob.putloc; getloc = ob.getloc; q = new char[ob.q.length]; // copy elements for(int i=getloc+1; i <= putloc; i++) q[i] = ob.q[i]; } // Construct a Queue with initial values. Queue(char a[]) { putloc = 0; getloc = 0; q = new char[a.length+1]; for(int i = 0; i < a.length; i++) put(a[i]); } // Put a characer into the queue. void put(char ch) { if(putloc==q.length-1) { System.out.println(" -- Queue is full."); return; } putloc++; q[putloc] = ch; } // Get a character from the queue. char get() { if(getloc == putloc) { System.out.println(" -- Queue is empty."); return (char) 0; } getloc++; return q[getloc]; } } // Demonstrate the Queue class. class QDemo2 { public static void main(String args[]) { // construct 10-element empty queue Queue q1 = new Queue(10); char name[] = {'T', 'o', 'm'}; // construct queue from array Queue q2 = new Queue(name); char ch; int i; // put some characters into q1 for(i=0; i < 10; i++) q1.put((char) ('A' + i)); // construct queue from another queue Queue q3 = new Queue(q1); // Show the queues. System.out.print("Contents of q1: "); for(i=0; i < 10; i++) { ch = q1.get(); System.out.print(ch); } System.out.println("\n"); System.out.print("Contents of q2: "); for(i=0; i < 3; i++) { ch = q2.get(); System.out.print(ch); } System.out.println("\n"); System.out.print("Contents of q3: "); for(i=0; i < 10; i++) { ch = q3.get(); System.out.print(ch); } } } listing 15 // A simple example of recursion. class Factorial { // This is a recursive function. int factR(int n) { int result; if(n==1) return 1; result = factR(n-1) * n; return result; } // This is an iterative equivalent. int factI(int n) { int t, result; result = 1; for(t=1; t <= n; t++) result *= t; return result; } } class Recursion { public static void main(String args[]) { Factorial f = new Factorial(); System.out.println("Factorials using recursive method."); System.out.println("Factorial of 3 is " + f.factR(3)); System.out.println("Factorial of 4 is " + f.factR(4)); System.out.println("Factorial of 5 is " + f.factR(5)); System.out.println(); System.out.println("Factorials using iterative method."); System.out.println("Factorial of 3 is " + f.factI(3)); System.out.println("Factorial of 4 is " + f.factI(4)); System.out.println("Factorial of 5 is " + f.factI(5)); } } listing 16 // Use a static variable. class StaticDemo { int x; // a normal instance variable static int y; // a static variable } class SDemo { public static void main(String args[]) { StaticDemo ob1 = new StaticDemo(); StaticDemo ob2 = new StaticDemo(); /* Each object has its own copy of an instance variable. */ ob1.x = 10; ob2.x = 20; System.out.println("Of course, ob1.x and ob2.x " + "are independent."); System.out.println("ob1.x: " + ob1.x + "\nob2.x: " + ob2.x); System.out.println(); /* Each object shares one copy of a static variable. */ System.out.println("The static variable y is shared."); ob1.y = 19; System.out.println("ob1.y: " + ob1.y + "\nob2.y: " + ob2.y); System.out.println(); System.out.println("The static variable y can be" + " accessed through its class."); StaticDemo.y = 11; // Can refer to y through class name System.out.println("StaticDemo.y: " + StaticDemo.y + "\nob1.y: " + ob1.y + "\nob2.y: " + ob2.y); } } listing 17 // Use a static method. class StaticMeth { static int val = 1024; // a static variable // a static method static int valDiv2() { return val/2; } } class SDemo2 { public static void main(String args[]) { System.out.println("val is " + StaticMeth.val); System.out.println("StaticMeth.valDiv2(): " + StaticMeth.valDiv2()); StaticMeth.val = 4; System.out.println("val is " + StaticMeth.val); System.out.println("StaticMeth.valDiv2(): " + StaticMeth.valDiv2()); } } listing 18 class StaticError { int denom = 3; // a normal instance variable static int val = 1024; // a static variable /* Error! Can't access a non-static variable from within a static method. */ static int valDivDenom() { return val/denom; // won't compile! } } listing 19 // Use a static block class StaticBlock { static double rootOf2; static double rootOf3; static { System.out.println("Inside static block."); rootOf2 = Math.sqrt(2.0); rootOf3 = Math.sqrt(3.0); } StaticBlock(String msg) { System.out.println(msg); } } class SDemo3 { public static void main(String args[]) { StaticBlock ob = new StaticBlock("Inside Constructor"); System.out.println("Square root of 2 is " + StaticBlock.rootOf2); System.out.println("Square root of 3 is " + StaticBlock.rootOf3); } } listing 20 // A simple version of the Quicksort. class Quicksort { // Set up a call to the actual Quicksort method. static void qsort(char items[]) { qs(items, 0, items.length-1); } // A recursive version of Quicksort for characters. private static void qs(char items[], int left, int right) { int i, j; char x, y; i = left; j = right; x = items[(left+right)/2]; do { while((items[i] < x) && (i < right)) i++; while((x < items[j]) && (j > left)) j--; if(i <= j) { y = items[i]; items[i] = items[j]; items[j] = y; i++; j--; } } while(i <= j); if(left < j) qs(items, left, j); if(i < right) qs(items, i, right); } } class QSDemo { public static void main(String args[]) { char a[] = { 'd', 'x', 'a', 'r', 'p', 'j', 'i' }; int i; System.out.print("Original array: "); for(i=0; i < a.length; i++) System.out.print(a[i]); System.out.println(); // now, sort the array Quicksort.qsort(a); System.out.print("Sorted array: "); for(i=0; i < a.length; i++) System.out.print(a[i]); } } listing 21 // Use an inner class. class Outer { int nums[]; Outer(int n[]) { nums = n; } void Analyze() { Inner inOb = new Inner(); System.out.println("Minimum: " + inOb.min()); System.out.println("Maximum: " + inOb.max()); System.out.println("Average: " + inOb.avg()); } // This is an innner class. class Inner { int min() { int m = nums[0]; for(int i=1; i < nums.length; i++) if(nums[i] < m) m = nums[i]; return m; } int max() { int m = nums[0]; for(int i=1; i < nums.length; i++) if(nums[i] > m) m = nums[i]; return m; } int avg() { int a = 0; for(int i=0; i < nums.length; i++) a += nums[i]; return a / nums.length; } } } class NestedClassDemo { public static void main(String args[]) { int x[] = { 3, 2, 1, 5, 6, 9, 7, 8 }; Outer outOb = new Outer(x); outOb.Analyze(); } } listing 22 // Use ShowBits as a local class. class LocalClassDemo { public static void main(String args[]) { // An inner class version of ShowBits. class ShowBits { int numbits; ShowBits(int n) { numbits = n; } void show(long val) { long mask = 1; // left-shit a 1 into the proper position mask <<= numbits-1; int spacer = 0; for(; mask != 0; mask >>>= 1) { if((val & mask) != 0) System.out.print("1"); else System.out.print("0"); spacer++; if((spacer % 8) == 0) { System.out.print(" "); spacer = 0; } } System.out.println(); } } for(byte b = 0; b < 10; b++) { ShowBits byteval = new ShowBits(8); System.out.print(b + " in binary: "); byteval.show(b); } } }