Case Study of CSG712

Data Stream
Management System

Qutline

® Traditional DBMS v.s. Data Stream
Management System

® First-generation: Aurora

Run-time architecture

Load Shedding
Storage Scheduling

QoS Data Structure

g Lot ¥ B Fu £ ¥is & S A B f " LT) S L - L . - Y r ¥ . Sty

A PN g T

Aurora

® First-generation data stream management
system.

® Aimed to manage data streams for

Sk e e e (B AT SN0

A1)

-
H L&

Aurora System Model

[— A—-
—> —>

Input data Output to
streams apphcations

‘. - > 4
Operator boxes Continuous & ad hoc

queries

® |ncoming streams are processed in the way defined
by an application administrator.

® Application administrator decides the processes
adaptive to accepted queries requests.

Aurora Query Model

QOS spec

wrag’ m “o = m m .

Connection
pont

Persistence spec:

Three kinds of queries: continuous queries(real-time processing),
views and ad hoc queries(attached to connection points).

Connection points provide persistent storage.

QoS graphs specify the utility of the output in terms of
performance and quality attributes.

Aurora Run-time Architecture

QoS Data Structure

| Q—=0 ||
| Q—{IIT=T1 |

. . . Aurora Storage
| ot | 3 Management(ASM)

i | Buffer manager

Real-time Scheduling
Load Shedding

QoS Data Structure

® Statistical information about Quality of Services
® Used to tune up the system to maximize QoS

® Three ways to measure QoS in Aurora

% tuples
delivered

Aurora Storage Management

® Requirements for ASM:

® Store the tuples being passed through an Aurora
network -- main memory

® Maintain extra storage for connection points --
external memory

. LT g . 4 A . . i b » J ¥ i NS 2 .) A » . ¥ » € oR
h ks Ay > &ls ’ NS . sk e gl Ce 5 " T A FPoA Tl ket] A " e ey R B Y [e FRRT A M TR < b . . Ol
. OSERN : 4 P ¢ Dadbr S M Rl Tty < A AN C L Sl A) S A ' a) % r :
R B o .,Or\. Ll &y SN S LI (At W g D S St g R A AT YA Fa A Sea Rl g 1 W NS Sl i S e O
))4 i 14 = = VU & s N/ X1 Y NG ORI iy P 0 YA MR e) " S r, A% 4 g MCOAT A, » o -
10 & Y iy fe M T :- Y| AN q.r‘_._‘;.f-!_, .,;;\‘,i. LY o o S 1k £3. A S ST T 1 S ST 84 et R Tl

Aurora Storage Management

® Fach operator box will have a variable-length queue.

- The successor box will maintain two pointers on the
queue. The gap between head and tail shows the size of
the window.

- The length of the queue can be adjusted by ASM
dynamically(in the unit of fixed size)

Aurora Storage Management

® ASM maintains a buffer pool at start-up for queue storage.
® Buffer replacement policy:

® ASM evicts the lowest-priority blocks in main
memory(notlce that QoeldLee is not necessarlly one

. - ¥ 2 - . K ’ ’
g e L g >)__ g W "t e a3k Pk (P s V] % 3 6 4 { X R & i s K i 1Y SR PR TN e FRUTEL, P T~ 00
0 R ~“.J ,._ [ek . b __,_,_,. AT R e s \,‘. ‘ ,"‘ iy gV b _h S S L R Y 'x # ""*’- __. % A AR Pl LA . o >
.4 3 @ , “.z + AL TR gl ae s e -y vy ,,"." .’-ﬂ:a e LA ,. ol P » Cacpdl, -'j&\' ACEK A A R St (. ~‘.. A, Loy .-' d’ A Wt S e ')"‘V s _'a S At A
¢ -fﬁ R A W s LN ~:.-",-'_~. N e _s-v,“: o b SR O T < T PR N W AR g i e Tl 7] WL) IR TN e Y PRI 1 i Ayl
W A I A" &Y e - ¢ ! - L e SN) : X

Aurora Run-time Scheduler

® Goal
® Maximize overall QoS.
® Reduce overall tuple execution costs.

® |n order to improve the performance,Aurora
exploits two kinds of nonlinearities:

® |nterbox nonlinearity: E2E tuple processing
costs may drastically increase if buffer
space is not sufficient and tuples need to be
shuttled back and forth between memory
and disk several times in their lifetime. (red
line if x is number of tuples and y is cost)

® Intrabox nonlinearity: The cost of tuple
processing may decrease as the number of
tuples that are available for processing at a
given box increases, by cutting down the
number of box calls and optimizing in batch
mode. (blue line if x is number of tuples and
y is cost)

Aurora Run-time Scheduler

® Basic idea: try to avoid the Interbox nonlinearity and propagate the
Intrabox nonlinearity.

® T[wo scheduling policies:

® Train scheduling: batching multiple tuples as input to a single
operation box.

® Superbox scheduling: pushing a tuple train through multiple boxes.

L]
n details:
. o ‘ . ' '
5 BN 19 3 ..-,’.“,,. -‘,/ =Y T .;,‘_:._L g L ?
. %

i VR L)) f
& =2 i add (SR - b AR o o i 3 A 3
. D e Bin Al L L ', A
. P S ,fr\-~,_q:~ et S D Rl 7 ¥ et e Ouns M P L™, Ty et S i LA Wl
’ adnis T ™ a N i .
* S & | ’

Aurora Run-time Scheduler

® Priority assighment is based on the utility of outputs:

® Static-based approach: if we can know ahead the expectation
of utility of the output from some box, we will try to assign
higher priority to it.

Feedback-based approach: continuously observes the
performance of the system and dynamically reassign the
priorities: increase the priorities of those that are not doing

¥,
2y t N e il o T -,‘l o 3 s e T Py ¥ ", B R 25 o B XS e L3 ‘.'»r by J s TS f', 3 " & e SR, o S e SR e
A 11 f - O 1 - - AN " N 4 — NN N 5 N\ -~ I~ | rale B v, \ ol 2 N ™ 4 -~ af & | 7 & Ve 4 - : e s £ P
YWCII AI114 dadceccrcecasc vrioriuies Ofg1 vie aponcanort uvuiacr argg aireany
" , J g | RER - -v by ¥4 | | & R P o I E 4L 4 4 - .- 41 f 3

Aurora Load Shedding

® Try to avoid overload and keep good performance
® Detect/Monitor - Shedding

® TJwo introspection schemes are used to check the overload in
system.

® Static analysis and dynamic analysis
K Statlc |f we have known the expectatlon of the stream and'_

o Sy e e el £ S ». KT o N Ehaly i 0 L5 W 0
48y T AR) ‘ qr . i de iy e : ‘ p 4 o e Sfaks "w 4-‘\ v e & e oLy
fy . o ' ,” R - .y ,x‘ } i B # ey & 'o - \) 3 D7 Saand
§ d v A '."',’~' ’ A== 7 & e * ’ NN !‘;‘: _" ¥, ?-_’.;!7 1: _a _f, 3 :"» 1‘ A -! : ‘/—.\l": & ‘f\l '.'} . 1 ~ =74 I? = P .,'»'-.-';/‘ T .'.“ 202 "-»-, 4_. g- S e

Aurora Load Shedding

® Two dropping policy to minimize the degrade of overall system
utility and keep the application semantics.

® TJolerant dropping

Based on QoS-Drop graph, randomly drop with the
percentage with minimum QoS lost.

® Semantic load shedding by filtering tuples

Based on QoS-Value graph, filter tuples which are less
Important.

% tuples - Output
delivered value

Distributed DSMS

® Second-generation DSMS ...
® Prototype came out with the first-generation!

® At the same time when Aurora came up,Aurora* and

Medusa had been proposed for distributed data stream
management.

® Borealis is the youngest heir of Aurora and Medusa, which
is aimed high-available distributed stream services.

Scalable Distributed Stream Processing

® Aurora™ intra-participant distribution

® Multiple single-node Aurora servers that belong to the
same administrative domain.

Partition operation boxes in original one Aurora system
into several peer systems.

» \ N N » ok P . 2 Y @ - e~ D)o o~ PPN B 3% N LY by e
> 4 e) YNi VAN o N om 18 R alslif=1all~ ay NDNITA & a) anl raYayal e L F 7 R N T pAS S) P
- & 1S 11 ‘t oA w1 B Ry 2 C 1 J1€ InSLIILILILE m! SIeallil r- Jﬂ" y T S | ﬁ e AT B Nl LI N Y N
L7 AR AL I;'- HQUIN \ 2 “,."'A? TR "(JAICA N AN\ '_’.‘.:v u‘.“:g. | .-\-_‘2.":7,:-;'_ i N\ “ Uil vl il | 'Y? 1T VVUJ =) | 11\ A=/ M ‘,!_..;g R VA RN T oy
v AT A . L ~ AL T L v & » 3 & AR . - S - X [

Reference

Abadi et al. Aurora: a new model and architecture for data stream
management. The VLDB Journal The International Journal on Very
Large Database (2003)

Stan Zdonik, Michael Stonebraker, Mitch Cherniack. The Aurora
and Medusa Projects. IEEE Data Engineering Bulletin (2003)

8
ayay

