
Data Stream
Management System

Jian Wen

Case Study of CSG712

Spring 2008
Northeastern University

Outline
• Traditional DBMS v.s. Data Stream

Management System

• First-generation: Aurora

• Second-generation: Medusa & Borealis

Run-time architecture

QoS Data Structure

Storage Scheduling

Load Shedding

DBMS v.s. DSMS

HADP

Current state of data
is important.

Triggers and alerters
are uncommon.

Synchronized data
and exact-answer

queries.

No Real-time

DAHP

Management over
some history.

Trigger-oriented

Unstable data and
time-based queries.

Real-time

Aurora

• First-generation data stream management
system.

• Aimed to manage data streams for
monitoring applications.

• Sensors with limited capacity

• Multiple data processing and
queries(query network)

Aurora System Model

• Incoming streams are processed in the way defined
by an application administrator.

• Application administrator decides the processes
adaptive to accepted queries requests.

Aurora Query Model

• Three kinds of queries: continuous queries(real-time processing),
views and ad hoc queries(attached to connection points).

• Connection points provide persistent storage.

• QoS graphs specify the utility of the output in terms of
performance and quality attributes.

• QoS Data Structure

• Aurora Storage
Management(ASM)

• Real-time Scheduling

• Load Shedding

Aurora Run-time Architecture

• Statistical information about Quality of Services

• Used to tune up the system to maximize QoS

• Three ways to measure QoS in Aurora

QoS Data Structure

• Requirements for ASM:

• Store the tuples being passed through an Aurora
network -- main memory

• Maintain extra storage for connection points --
external memory

• For connection points:

• Like traditional DBMS: use B-Tree

• Batch operations: ASM will gather up batches of
tuples and then update the B-Tree.

• For tuples passing: queue & buffer

Aurora Storage Management

• Each operator box will have a variable-length queue.

- The successor box will maintain two pointers on the
queue. The gap between head and tail shows the size of
the window.

- The length of the queue can be adjusted by ASM
dynamically(in the unit of fixed size)

Aurora Storage Management

• ASM maintains a buffer pool at start-up for queue storage.

• Buffer replacement policy:

• ASM evicts the lowest-priority blocks in main
memory(notice that one queue is not necessarily one
block).

• ASM periodically checks the buffer whether some blocks
in buffer are not “running”, and replaces them with
required, higher-priority blocks.

Aurora Storage Management

• Goal:

• Maximize overall QoS.

• Reduce overall tuple execution costs.

• In order to improve the performance, Aurora
exploits two kinds of nonlinearities:

• Interbox nonlinearity: E2E tuple processing
costs may drastically increase if buffer
space is not sufficient and tuples need to be
shuttled back and forth between memory
and disk several times in their lifetime. (red
line if x is number of tuples and y is cost)

• Intrabox nonlinearity: The cost of tuple
processing may decrease as the number of
tuples that are available for processing at a
given box increases, by cutting down the
number of box calls and optimizing in batch
mode. (blue line if x is number of tuples and
y is cost)

Aurora Run-time Scheduler

• Basic idea: try to avoid the Interbox nonlinearity and propagate the
Intrabox nonlinearity.

• Two scheduling policies:

• Train scheduling: batching multiple tuples as input to a single
operation box.

• Superbox scheduling: pushing a tuple train through multiple boxes.

• In details:

• have boxes queue as many tuples as possible without processing
them, thereby generating long tuple train;

• process complete train at once;

• pass whole train to subsequent boxes without going to disk;

• scheduler tells each box when to execute and how many queued
tuples to process.

Aurora Run-time Scheduler

Aurora Run-time Scheduler

• Priority assignment is based on the utility of outputs:

• Static-based approach: if we can know ahead the expectation
of utility of the output from some box, we will try to assign
higher priority to it.

• Feedback-based approach: continuously observes the
performance of the system and dynamically reassign the
priorities: increase the priorities of those that are not doing
well and decrease priorities of the application that are already
in their good zones(evaluated by the QoS).

• Combine scheduling with priority:

• first assigning priorities to select individual outputs and then
exploring opportunities for constructing and processing tuple
trains.

• Try to avoid overload and keep good performance

• Detect/Monitor - Shedding

• Two introspection schemes are used to check the overload in
system.

• Static analysis and dynamic analysis

• Static: if we have known the expectation of the stream and
also the capacity of the processing path, we can easily judge
whether there are too much flows on the processing path.

• Dynamic: for each time when we finish the query
processing, we check the QoS-Delay graph to see whether
most of the outputs are in the good zone. If not, we can
say that there is an overload.

Aurora Load Shedding

Aurora Load Shedding

• Two dropping policy to minimize the degrade of overall system
utility and keep the application semantics.

• Tolerant dropping
Based on QoS-Drop graph, randomly drop with the
percentage with minimum QoS lost.

• Semantic load shedding by filtering tuples
Based on QoS-Value graph, filter tuples which are less
important.

• Second-generation DSMS ...

• Prototype came out with the first-generation!

• At the same time when Aurora came up, Aurora* and
Medusa had been proposed for distributed data stream
management.

• Borealis is the youngest heir of Aurora and Medusa, which
is aimed high-available distributed stream services.

Distributed DSMS

• Aurora*: intra-participant distribution

• Multiple single-node Aurora servers that belong to the
same administrative domain.

• Partition operation boxes in original one Aurora system
into several peer systems.

• Medusa: inter-participant federated operation

• Distributed infrastructure that provides service delivery
among autonomous participants.

• Medusa is a agoric system, using economic principles to
regulate participant collaborations and solve problems on
load and sharing.

Scalable Distributed Stream Processing

Reference

• Abadi et al. Aurora: a new model and architecture for data stream
management. The VLDB Journal The International Journal on Very
Large Database (2003)

• Stan Zdonik, Michael Stonebraker, Mitch Cherniack. The Aurora
and Medusa Projects. IEEE Data Engineering Bulletin (2003)

• Cherniack et al. Scalable Distributed Stream Processing. CIDR
Conference (2003)

• Abadi et al. The Design of the Borealis Stream Processing Engine.
Second Biennial Conference on Innovative Data Systems
Research (2005)

Questions?

Thanks!

