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ABSTRACT

We present a unified model which, given the ranked lists
of documents returned by multiple retrieval systems in re-
sponse to a given query, simultaneously solves the problems
of (1) fusing the ranked lists of documents in order to ob-
tain a high-quality combined list (metasearch); (2) gener-
ating document collections likely to contain large fractions
of relevant documents (pooling); and (3) accurately evalu-
ating the underlying retrieval systems with small numbers
of relevance judgments (efficient system assessment). Our
approach is based on the Hedge algorithm for on-line learn-
ing. In effect, our proposed system “learns” which docu-
ments are likely to be relevant from a sequence of on-line
relevance judgments. In experiments using TREC data, our
methodology is shown to outperform standard methods for
metasearch, pooling, and system evaluation, often remark-
ably so.

1. INTRODUCTION

We consider the problems of metasearch, pooling, and sys-
tem evaluation, and we show that all three problems can
be efficiently and effectively solved with a single technique
based on the Hedge algorithm for on-line learning. Our re-
sults from experiments with TREC data demonstrate that:
(1) As an algorithm for metasearch, our technique combines
ranked lists of documents in a manner whose performance
equals or exceeds that of benchmark algorithms such as
CombMNZ and Condorcet, and it generalizes these algo-
rithms by seemlessly incorporating user feedback in order to
obtain dramatically improved performance. (2) As an algo-
rithm for pooling, our technique generates sets of documents
containing far more relevant documents than standard tech-
niques such as TREC-style depth pooling. (3) These pools,
when used to evaluate retrieval systems, estimate the per-
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formance of retrieval systems and rank these systems in a
manner superior to TREC-style depth pools of an equivalent
S1ze.

Our unified model for solving these three problems is based
on the Hedge algorithm for on-line learning. In the context
of these problems, Hedge effectively learns which systems
are “better” than others and which documents are “more
likely relevant” than others, given on-line relevance feed-
back. Thus Hedge (1) learns to rank documents in order of
relvance (metasearch), (2) learns how to generate document
sets likely to contain large fractions of relevant documents
(pooling), and (3) efficiently and effectively evaluates the
underlying retreival systems using these pools.

In the sections that follow, we describe the problems of
metasearch, pooling, and system evaluation in more detail
and discuss our results.

1.1 Metasearch

Metasearch is the well-studied process of fusing the ranked
lists of documents returned by a collection of systems in re-
sponse to a given user query in order to obtain a combined
list whose quality equals or exceeds that of any of the under-
lying lists. Many metasearch techniques have been proposed
and studied [3, 9, 14, 2, 12]. In this work, we consider two
benchmark techniques: the first is based on combining the
normalized scores given to each document by the underly-
ing systems (CombMNZ [6, 10]), and the second is based on
viewing the metasearch problem as a multi-candidate elec-
tion where the documents are candidates and the systems
are voters expressing preferential rankings among the can-
didates (Condorcet [13]).

CombMNZ and Condorcet produce quality ranked lists
of documents by fusing the ranked lists provided by a col-
lection of underlying systems. Given ranked lists produced
by good but sufficiently different underlying systems, these
metasearch techniques can produce fused lists whose qual-
ity exceeds that of any of the underlying lists. Given ranked
lists produced by possibly correlated systems of varying per-
formance, these metasearch techniques will most often pro-
duce fused lists whose performance exceeds that of the “av-
erage” underlying list but which rarely exceeds that of the
best underyling list.

In the context of a metasearch engine, the fused list pro-
duced by CombMNZ or Condorcet would be presented to the
user who would naturally begin processing the documents
in rank order to satisfy the desired information need. While
the user could naturally and easily provide relevance feed-



back to the metasearch algorithm, these techniques are not
easily or naturally amenable to incorporating such feedback.

By contrast, our technique based on the Hedge algorithm
for on-line learning quite naturally incorporates relevance
feedback and performs impressively even in the absence of
feedback.

In the absence of feedback, the metasearch performance
of our technique most often equals or exceeds that of bench-
mark techniques such as CombMNZ and Condorcet. In ex-
periments using TREC data, Hedge effectively equaled the
performance of CombMNZ in four out of five competitions
tested (TRECs 3, 6, 7, and 8), and Hedge outperformed
CombMNZ in one competition (TREC 5); Hedge consis-
tently outperformed Condorcet in each of the competitions
tested, significantly so in two competition (TRECs 6 and 7).

In the presence of relevance feedback, our technique rapidly
and effectively “learns” how to fuse the underlying ranked
lists, significantly outperforming CombMNZ and Condorcet,
and often outperforming the best underlying system after
only a handful of relevance judgments.

1.2 Pooling and System Evaluation

Collections of retrieval systems are traditionally evaluated
by (1) constructing a test collection of documents (the “cor-
pus”), (2) constructing a test collection of queries (the “top-
ics”), (3) judging the relevance of the documents to each
query (the “relevance judgments”), and (4) assessing the
quality of the ranked lists of documents returned by each
retrieval system for each topic using standard measures of
performance such as mean average precision. Much thought
and research has been devoted to each of these steps in, for
example, the annual TREC competition [8].

For large collections of documents and/or topics, it is im-
practical to assess the relevance of each document to each
topic. Instead, a small subset of the documents is chosen,
and the relevance of these documents to the topics is as-
sessed. When evaluating the performance of a collection of
retrieval system, as in the annual TREC competition [8],
this judged “pool” of documents is typically constructed by
taking the union of the top k& documents returned by each
system in response to a given query; in the TREC compe-
tition, £ = 100 has been shown to be an effective cutoff in
evaluating the relative performance of retrieval systems [8].
Both shallower and deeper pools have been studied [16, 8],
both for TREC and within the greater context of the gen-
eration of large test collections [4]. Pooling is an effective
technique since many of the documents relevant to a topic
will appear near the top of the lists returned by (quality)
retrieval systems; thus, these relevant documents will be
judged and used to effectively assess the performance of the
collected systems.

While pooling is an effective technique for greatly reduc-
ing the number of relevance judgments required for effective
system evaluation, it can still be quite expensive. Within
the TREC competition, for example, upwards of 100 sys-
tems return lists of 1000 ranked documents in response to
each of 50 topics. Traditional TREC-style pooling dictates
that the top 100 documents returned by each system in re-
sponse to each topic should be judged, and these relevance
judgments should then be used to assess the relative perfor-
mance of the systems. While many of the top documents are
retrieved by multiple systems, thus reducing the overall size
of the pool, the total number of relevance judgments is still

substantial; for example, in TREC 8 [15] 86,830 relevance
judgments were used to assess the quality of the retrieved
lists submitted by 129 systems in response to 50 topics. Re-
ducing the number of relevance judgments required would
permit competitions such as TREC to scale well in the fu-
ture, as well as more easily permit the assessment of large
numbers of systems over vast, changing data collections such
as the World Wide Web.

Pools are often used to evaluate retrieval systems in the
following manner. The documents within a pool are judged
to determine whether they are relevant or not relevant to the
given user query or topic. Documents not contained within
the pool are assumed to be non-relevant. The ranked lists
returned by the retrieval systems are then evaluated using
standard measures of performance (such as mean average
precision) using this “complete” set of relevance judgments.
Since documents not present in the pool are assumed non-
relevant, the quality of the assessments produced by such a
pool is often in direct proportion to the fraction of relevant
documents found in the pool (its recall). On-line pooling
techniques have been proposed which attempt to identify
relevant documents as quickly as possible in order to exploit
this phenomenon [4].

In the results that follow, we demonstrate that the Hedge
algorithm for on-line learning is ideally suited to generating
efficient pools which effectively evaluate retrieval systems.
In effect, the Hedge algorithm learns which documents are
likely to be relevant, these documents can be judged and
added to the pool, and these relevance judgments can be
used as feedback to improve the learning process, thus gen-
erating more relevant documents in subsequent rounds. The
quality of the pools thus generated can be measured in two
ways: (1) At what rate are relevant documents found (recall

TREC
Pool 3 5 6 7 8
Depth | n=40 n=82 n=79 n=103 n=129
1 19 38 38 32 40
2 39 68 67 55 69
3 47 98 95 76 95
4 60 126 120 95 119
5 73 153 146 114 144
6 85 181 172 134 167
7 96 208 197 152 191
8 107 234 221 170 215
9 118 262 246 189 238
10 129 288 271 207 260
15 183 418 393 297 379
20 235 543 513 389 494
30 336 791 743 571 717
40 436 1034 969 754 939
50 531 1273 1191 936 1155
60 626 1509 1410 1114 1366
70 718 1745 1629 1299 1574
80 811 1978 1845 1486 1777
90 903 2206 2058 1675 1978
100 995 2434 2271 1860 2176

Table 1: The size of the pool (per query) for various
pool depths if the pooling is performed TREC-style.
Here n is the number of input systems in the given
data set.



percentage as a function of total judgments)? (2) How well
do these pools evaluate the retrieval systems (score or rank
correlations vs. “ground truth”)? In our experiments using
TREC data, Hedge found relevant documents at rates nearly
double that of benchmark techniques such as TREC-style
depth pooling. These Hedge pools were found to evaluate
the underlying retreival systems much better than TREC-
style depth pools of an equivalent size (as measured by
Kendall’s 7 rank correlation, for example). Finally, these
Hedge pools seemed particular effective at properly evaluat-
ing the best underlying systems, a task difficult to achieve
using small pools.

In the sections that follow, we first describe our methodol-
ogy for simultaneously solving the metasearch, pooling and
system evaluation problems using Hedge. We then describe
the results of our methodology in experiments conducted
on TREC data. Finally, we conclude by mentioning some
possible extensions of this work.

2. METHODOLOGY

The intuition for our methodololgy can be described as
follows. Consider a user who submits a given query to mul-
tiple search engines and receives a collection of ranked lists
in response. How would the user select documents to read
in order to satisfy his or her information need? In the ab-
sence of any knowledge about the quality of the underly-
ing systems, the user would probably begin by selecting
some document which is “highly ranked” by “many” sys-
tems; such a document has, in effect, the collective weight
of the underlying systems behind it. If the selected docu-
ment were relevant, the user would begin to “trust” systems
which retrieved this document highly (i.e., they would be
“rewarded”), while the user would begin to “lose faith” in
systems which did not retrieve this document highly (i.e.,
they would be “punished”). Conversely, if the document
were non-relevant, the user would punish systems which re-
trieved the document highly and reward systems which did
not. In subsequent rounds, the user would likely select docu-
ments according to his or her faith in the various systems in
conjunction with how these systems rank the various docu-
ments; in other words, the user would likely pick documents
which are ranked highly by trusted systems.

How can the above intuition be quantified and encoded
algorithmically? Such questions have been studied in the
machine learning community for quite some time and are of-
ten referred to as “combination of expert advice” problems.
One of the seminal results in this field is the Weighted Ma-
jority Algorithm due to Littlestone and Warmuth [11]; in
this work, we use a generalization of the Weighted Majority
Algorithm called Hedge due to Freund and Schapire [7].

Hedge is an on-line allocation strategy which solves the
combination of expert advice problem as follows. (See Fig-
ure 1.) Hedge is parameterized by a tunable learning rate
parameter 8 € [0,1], and in the absence of any a priori
knowledge, begins with an initially uniform “weight” w;j for
each expert i (in our case, w; = 1 Vi). The relative weight
associated with a expert corresponds to one’s “faith” in its
performance.

For each round t € {1,...,T}, these weights are normal-
ized to form a probability distribution p* where

t
t w;

Pi = ij}g',

Algorithm Hedge(3)

Parameters: 38 € [0,1]
initial weight vector w' € [0,1]V
with N wl =1
number of trials T

Do for t =1,2,...,T

wt

N R
=1 Wi

1. Choose allocation p’ =

2. Receive loss ' € [0, l]N from environment.

3. Suffer loss p’ - ¢£'.

. t+1 _ ¢t et
4. Set the new weight vector to be w; =w;B%.

Figure 1: Hedge Algorithm

and one places p! “faith” in system 4 during round t¢.

This “faith” can be manifested in any number of ways,
depending on the problem being solved. If the underlying
experts are making predictions about which stocks will rise
in the next trading day, one might invest one’s money in
stocks according to the weighted predictions of the underly-
ing experts. If a stock goes up, then each underlying expert
¢ which predicted this rise would receive a “gain,” and the
investor would also receive a gain in proportion to the money
invested, pf. If the stock goes down, then each underlying
expert ¢ which predicted a rise would suffer a “loss,” and
the investor would also suffer a loss in proportion to the
money invested. This is encoded in Hedge as follows. In
each round t, expert i suffers a loss £¢, and the algorithm
suffers a weighted average (mizture) loss' of 3, pie:.

Finally, the Hedge algorithm updates its “faith” in each
expert according to the losses suffered in the current round,
wf"'l = w%/o’l:. Thus, the greater the loss an expert suffers
in round ¢, the lower its weight in round ¢ + 1, and the
“rate” at which this change occurs is dictated by the tunable
parameter 3.

Over time, the “best” underlying experts will get the
“highest” weights, and the cummulative (mixture) loss suf-
fered by Hedge will be not much higher than that of the
best underlying expert. Specifically, Freund and Schapire
show that if L; =}, £} is the cummulative loss suffered by
expert i, then the cummulative (mixture) loss suffered by
Hedge is bounded by

min;{L;} -In(1/8) +In N
1-53

where N is the number of underlying experts.

2.1 HedgeApplication

We employ the Hedge algorithm to simultaneously solve
the problems of metasearch, pooling, and system evaluation
as follows. On a per query basis, each underlying retrieval
system is an “expert” providing “advice” about the rele-
vance of various documents to the given query. We must
define a method for selecting likely relevant documents based

LHedge S

'Tt is assumed that the losses and/or gains are bounded so
that they can be appropriately mapped to the range [0, 1].



on system weights and document ranks, and we must also
define an appropriate loss that a system should suffer for
retrieving a particular relevant or non-relevant document
at a specified rank. While a loss function which converges
to some standard measure of performance such as average
precision might be desirable, we instead work with a sim-
pler but related loss. The loss function is designed to re-
flect a document’s complete contribution to a system’s to-
tal precision (TP)—the sum of the precisions at all docu-
ment levels. It is defined for document d;, at rank rj by:
€= 1. (=1)ftel@r) . o 1, where I(rel(d)) is an indi-
cator function for the relevance of document di and rmax
is the total number of documents retrieved for this query.
In the limit of complete relevance judgments, one can show
that the total loss of a system converges to the negative of
the total precision plus a system-independent constant. For
our purposes, this measure demonstrates a close empirical
relationship to other popular measures of performance (such
as average precision at relevant documents) while it has the
advantage of being simple and “symmetric” (the magnitude
of the loss or gain is independent of relevance). We note
that this loss can be easily approximated since its magni-
tude is the difference between two harmonic numbers. Let
Hy = Ele 1/i be the i-th harmonic number; we then have

Tmax

1 1
L = 5 (_1)1(re1(dk))_ Z -
T=TE
-1

1 Heeiy)) [ X1 =1
- Ly (3E1FL

? r=1 r r=1 r

1 T
- 5 ' (_1)1( el ' (HTmax - Hrkfl)

1
~ g (FD) DD (I — In(r — 1)
— %_(_l)l(rel(dk)) n rm_ax -

ry—1

Note that the magnitude of this loss is highest for documents
which are highly ranked.

Given this loss function, we implement a simple pool-
ing strategy designed to maximize the learning rate of the
Hedge algorithm. At each iteration, we select the document
which would maximize the weighted average (mixture) loss
if it were non-relevant. Since the loss suffered by a system is
high Since this is exactly the unlabelled document with the
maximum expectation of relevance as voted by a weighted
linear combination of the systems, the strategy is also appro-
priate for selecting documents to be output in a metasearch
list.

3. RESULTS
TREC | MNZ COND Hedge-0 %MNZ %COND
30423 0403 0418  -0.012  +0.037
510294 0307 0309  +0.051  +0.006
60341 0315 0345  +0.012  +0.095
710320 0308 0323  +0.009  +0.049
810350 0.343  0.352  +.0014  +0.026

Table 2: Hedge-0 Method vs. Metasearch Tech-
niques Comb-MNZ and Condorcet.

The Hedge algorithm demonstrated uniformly excellent
performance across all TRECs tested (TRECs 3, 5, 6, 7,
and 8) in all three measures of performance- as an online
metasearch engine, as a pooling strategy for finding large
fractions of relevant documents, and finally as a mechanism
for rapidly evaluating the relative performance of retrieval
systems.

In the following discussion, we demonstrate results using
standard TREC-style pools of depth & and Hedge pools of
an equivalent size. Depth-n will refer to an evaluation with
respect to a TREC-style pool of all documents retrieved by
some system at depth n or less, and Hedge-m refers to an
evaluation with respect to the pool generated by the Hedge
algorithm after judging m documents. Standard TREC rou-
tines were used to evaluate the systems with respect to these
pools, yielding mean average precision (MAP) scores for the
underlying systems as well as the rankings of those systems
induced by these scores.

Although the three goals of the algorithm, as stated, are
somewhat intertwined, the action of the Hedge algorithm as
an online metasearch engine may be seen as enabling those of
pooling and system evaluation. The high quality ranked list
produced by the metasearch engine consists of documents
ranked in order of expected relevance, and therefore pro-
vides a foundation for document pooling— either performed
iteratively, or in multi-document batches. Documents with
high probability of relevance, in turn, prove to be good dis-
criminators of system quality, and thus, pools generated in
this manner enable rapid evaluation of system performance.

We examine the performance of the Hedge system as an
evolving metasearch list. At each iteration, the document
chosen to be judged is the one with the highest expecta-
tion of relevance. Thus, it is appropriate to build an on-
line metasearch list from these selections. To complete the
metasearch list, the remaining documents are likewise ranked
by weighted linear combination.

As shown in Table(?7), the Hedge algorithm begins in the
lower limit of 0 online relevance judgements with a base-
line MAP score which is equivalent or slightly better, in
almost all instances, to the performance of the well known
CombMNZ and Condorcet metasearch methods (the lower
dashed lines in Figure 2(a). Proceeding from the 0 level,
Hedge online metasearch results quickly surpass those of the
best underlying retrieval system (the upper dashed lines). In
TRECSs 3,5, and 7, the best system is equalled in 10 or fewer
judgements. TRECs 6 and 8 require somewhat more judge-
ments to achieve the performance of the best underlying
system. This reflects the fact that in both competitions the
best systems are outliers, with few retrieved documents in
common with the generic pack, and thus Hedge must initiate
more judgements prior to their discovery.

Figure 2(b) demonstrates the algorithm’s success in find-
ing relevant documents. The vertical axis corresponds to
percentage of total relevant documents and the dashed line
indicates the number of relevant documents present in the
Depth-n pools for depths 1-10, 15, and 20. Hedge perfor-
mance far surpasses the discovery rates of the depth pool-
ing method when compared at equivalent depths of docu-
ments judged. But even more indicative of the success of
the algorithm is a comparison of the number of judgements
required to achieve equivalent recall percentages. For exam-
ple, examining the TREC 8 curves along the horizontal axis,
we see that the Depth-n method requires approximately
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(a)Hedge-m: metasearch performance. (b)Hedge-m vs. Depth-n:

350 150

R
# docs judged

percent of total relevant docu-

ments discovered. (c) Hedge-m and Depth-n vs. actual ranks: k-r.

104 judgments to match the Hedge-40 return rate, and the
Hedge-69 rate (36 percent) is unmatched until Depth-8 (199
judgments). After almost 500 judgements, Depth-20 has
found only approximately 55% of relevant documents— a
rate achieved by Hedge in less than 150 judgements.
Figure 2(c) compares the system rankings produced by

the Hedge algorithm against those of Depth-n pooling at
equivalent levels of judged documents using the Kendall’s 7
measure. Again, the dashed line indicates the results of sys-
tem evaluations performed using standard TREC routines,
given Depth-n pools of size 1-10,15, and 20. Examination
of TREC 8 demonstrates typical performance. At 40 docu-



SYSTEM EVALUATION  depth-1 pooling TREC3 SYSTEM EVALUATION Hedge-19 TREC3

o0’ 00"
o °
35 > 35 o
®s ®s
[N s ©
0 K3 o a0 o o
= o M ¢
S ° ¢ 25 N °
x
g o ° s o M
3 ° @ = o °
S20 23 20 o
o 3 o
- ° g o
js ° < T ° <
Zis ° o 15 > 5
< . ° .
K o w002 3
o °
° ° ° °
of of
3 °
° °
° °
5 10 1 20 5 30 E3 0 5 10 15 20 5 30 E3 0
trec system rank trec system rank
SYSTEM EVALUATION  depth-1 pooling TRECS SYSTEM EVALUATION Hedge-38 TRECS
sof "% sof
&
& ° & °
7o 0¢°° 7of e Obf
° o o
o % S
6o} %0 6o} o ?
= 0 &
8 [N )
S0 % o 5o o 0%
2 o g o,
= ks s SEI)
S P o %
8 o @ ° o
S0l RS Saol %
< ERIN g o
I o © £ o 0
Sao- > s 50 o o 0T
3 RIPEIRY o LN
o 3
200 o °o% 200 6002
° o o °
o & o 0
200 4o i . . sof oo 0
6 0% % 2
10 20 20 0 50 0 0 ) 10 20 20 0 50 0 0 )
trec system rank trec system rank
SYSTEM EVALUATION  depth-1 pooling TREC6 SYSTEM EVALUATION Hedge-38 TREC6
o o
o B
90° o
7o} 500 7oF : ¢ o
050 0%
o P 0 000
6o} ® 6o} %
o © A4
= o %40 %o ¢
S sof o % sof o ° I
=) LIRS = 0w
£ %0 o 8 o o ¢
8 ol D T @ sl @ % o
s ° o =) SR
7 o0 T H %
= o s ° T o o
=y ® 5 . 0| & s
3 0% o 20 o,
200 k2 s ° 200 o %o .
° o o ©
< o SRS
° %0 N
10r N R RS
0, © 0o
oo o
10 20 0 0 10 20 0 0

E o
trec system rank
SYSTEM EVALUATION Hedge-32 TREC7

20 o
trec system rank
SYSTEM EVALUATION  depth-1 pooling TREC7

100 D P
%o%
IS K
9| 1 9| o X 1
00 3%
00,00
o) 1 o) i : 00y 1
o 0 e
£ 1 0| 5 00 00 ]
8 I o
= x o %00
2 ool {1 Ew 0 0%, 1
3 2 o °
38 o 9%
8 sof 1 & O oo R
TP 8 o0 ° 3
£ 1 T s oy J
a © 3
8 0% %o
= w0 B a0 & oo 1
3 o s
O s o o 0% s
20F % R b g g0 % R
IR S AN
° o °
I S @ 1 10} % 9 1
B s §
06y O 0 0o
9, %0
107 20 2 40 s0 e 70 80 90 100 % 20 = a0 s e 70 s 0 100
trec system rank trec system rank
SYSTEM EVALUATION  depth-1 pooling TREC8 SYSTEM EVALUATION Hedge-40 TREC8
o S5 o,
120 O 4 120 1
RS 069 @’%‘é)
S &,
2, o0
100] 0% 4 4 100] AN 4
o & ¥, ®
> g 0 40 o
= ° o A o
€ o 0 0 TG00 E S % 00 —
2 e 23 ¥ 00 & °
£ of %0, 8 07 s o
g |° o © ° °. °© R
= o © o S o o
— 50] o0 6.0 4 860 %0 o 4
T o % g 09 9% o
£ o % o * 0% % © %
a o © 6 o% © s
@ o @ o 3
T o 4 40 0.4 & 4
(3 s 50
o2 %o XY 9
® o LTS
o ° o
° ) o
oy @ S ° 1 S 2o 1
°
o o o g0 o
o & 000%
00% S

100 120 20 100 120

60 80 60 80
trec system rank trec system rank

Figure 3: Depth-1 and equivalent Hedge-m rankings vs. actual ranks.

ments, the 7 for Hedge is 0.87. This compares with 0.73 for curacy of 0.91 (Hedge-69) corresponds to a system approach-
Depth-1— a substantial improvement. Likewise, Hedge-69 ing Depth-8 (198 judgments).

achieves an accuracy of 0.91, vs. a Depth-2 accuracy of 0.73. Finally, a look at the scatter plots in Figure 3 demon-

Next, comparing along the horizontal axis the pool depths strates another aspect of algorithm performance in the eval-
required to achieve equivalent rates of ordering accuracy, we uation of system orderings which is somewhat obscured in
see that in order to achieve an accuracy of 0.87(Hedge-40), the traditional Kendall’'s 7 measure. Each pair of plots

the equivalent Depth-3 pool requires 95 judgments. An ac- shows Depth-1 and equivalent Hedge-n predicted ranks vs.



the actual TREC rankings. Note in these plots that the
rankings proceed from best systems in the lower left corner
to worst in the upper right. TREC 3 plots are ambiguous
due to the relatively low number of systems in the compe-
tition, but later TRECs demonstrate the common tendency
toward difficulty in establishing rankings for the best sys-
tems.

While poor systems tend to be easily identifiable due to
their lack of commonality with any other systems, many of
the better systems likewise exhibit a great deal of variance in
returned documents. Thus, while poor systems may be well
ranked using standard techniques with depth pools as small
as Depth-1, the better systems (and for most purposes, the
systems of most interest) tend to be the more difficult to
rank correctly. As the Kendall’s 7 measure of accuracy in
system ordering treats documents at all rank levels equally,
much of the qualitative superiority of algorithms which per-
form well in classifying higher ranked systems is obscured
by commonly good performance in ranking the poorer sys-
tems. Examination of tightened patterns of the Hedge plots
in the regions of interest indicates that performance of the
algorithm in evaluating system orderings is somewhat bet-
ter than the excellent performance demonstrated in Figure

2(c).
4. CONCLUSIONS

We have shown that metasearch can be a powerful tool
in both (1) selecting small pools of documents to judge in
order to assess the performance of retrieval systems and (2)
assessing the performance of retrieval systems in the absence
of relevance judgments.

This work leaves open a number of interesting questions.
First, our use of hard thresholds (i.e., “top k” documents
from the metasearch list) in choosing both the meta-pool
and the pseudo-relevant documents is somewhat simplistic,
though empirically effective. One approach to improve the
performance of meta-pooling would be to combine meta-
pooling and pseudo-evaluation. For example, one could as-
sume, by default, that the top k¥ documents of the metasearch
list are relevant (as we do in pseudo-evaluation), and from
these top & documents choose a subset to actually evaluate
(as in meta-pooling). Note that meta-pooling, as described,
dictates evaluating the top documents from the metasearch
list. However, these documents are very likely to be relevant;
given a limited number of relevance a judgments, these judg-
ments would almost certainly be better spent on documents
somewhat deeper in the metasearch list.

Second, for pseudo-evaluation and for meta-pooling with
difficult data sets (such as TREC 8), the challenge is in
properly identifying the top retrieval systems in the collec-
tion. It is likely that better metasearch techniques and/or
the more judicious use of relevance judgments will be neces-
sary to properly identify these top systems with few and/or
no relevance judgments.
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