
1

file organization

many slides courtesy James Allan@umass

2

file organization

• indexes
• bitmaps
• signature files
• inverted files
wildcards•

3

file organization

Choices for accessing data during query evaluation

• Scan the entire collection
– Typical in early (batch) retrieval systems
– Computational and I/O costs are O(characters in collection)
– Practical for only small text collections
– Large memory systems make scanning feasible

• Use indexes for direct access
– Evaluation time O(query term occurrences in collection)
– Practical for large collections
– Many opportunities for optimization
– ML(Nearest Neighbor) research with image databases shows
that indexes can be difficult

• Hybrids: Use small index, then scan a subset of
the collection

4

indexes
What should the index contain?

• Database systems index primary and secondary
keys

– This is the hybrid approach
– Index provides fast access to a subset of database records
– Scan subset to find solution set

• IR Problem: Cannot predict keys that people will use in
queries

– Every word in a document is a potential search term

• IR Solution: Index by all keys (words)

5

indexes

Index is accessed by the atoms of a query language

• The atoms are called “features” or “keys” or “terms”

• Most common feature types:
– Words in text, punctuation
– Manually assigned terms (controlled and uncontrolled vocabulary)
– Document structure (sentence and paragraph boundaries)
– Inter- or intra-document links (e.g., citations)

• Composed features
– Feature sequences (phrases, names, dates, monetary amounts)
– Feature sets (e.g., synonym classes)

• Indexing and retrieval models drive choices
– Must be able to construct all components of those models

6

indexes

Indexing choices (there is no “right” answer)

• What is a word (tokenization)?
– Embedded punctuation (e.g., DC-10, long-term, AT&T)
– Case folding (e.g., New vs new, Apple vs apple)
– Stopwords (e.g., the, a, its)
– Morphology (e.g., computer, computers, computing,
computed)

• Index granularity has a large impact on speed and
effectiveness

– Index stems only?
– Index surface forms only?
– Index both?

7

indexes
The contents depend upon the retrieval model

• Feature presence/absence
– Boolean
– Statistical (tf, df, ctf, doclen, maxtf)
– Often about 10% the size of the raw data, compressed

• Positional
– Feature location within document
– Granularities include word, sentence, paragraph, etc
– Coarse granularities are less precise, but take less space
– Word-level granularity about 20-30% the size of the raw data,
compressed

8

indexes: implementation

Common implementations of indexes
• Bitmaps
• Signature files
• Inverted files

Common index components
• Dictionary (lexicon)
• Postings

– document ids
– word positions

9

indexes: bitmaps

• Bag-of-words index only
• For each term, allocate vector with one bit per
document
• If feature present in document n, set nth bit to
1, otherwise 0
• Boolean operations very fast
• Space efficient for common terms (why?)
• Space inefficient for rare terms (why?)
• Good compression with run-length encoding
(why?)
• Difficult to add/delete documents (why?)
• Not widely used

10

indexes: signature files

• Bag-of-words only
• Also called superimposed coding
• For each term, allocate fixed size s-bit
vector(signature)

• Define hash function:
– Single function: word → 1..2s [sets all s-bits]
– Multiple functions: word → 1..s [selects which bits to set]

• Each term has an s-bit signature
– may not be unique!

• OR the term signatures to form document signature
• Long documents are a problem (why?)

– Usually segment them into smaller pieces

11

indexes: signature files

12

indexes: signature files

13

indexes: signature files

• At query time:
– Lookup signature for query (how?)
– If all corresponding 1-bits are “on” in document
signature, document probably contains that term

• Vary s to control Pr[false alarm]
– Note space tradeoff

• Optimal s changes as collection grows (why?)

• Many variations
• Widely studied
• Not widely used

14

signature files trivia

• Punch card as “card
catalogue”
• Punch out bits of
signature

– Tolkein = 4, 11, & 14
– Harper = 4, 14, 19
– Lee = 11, 18
– …

• To find an item
– Calculate its signature
– Run rods through “bits”
– “Harper Lee” is 5 bits

• “Tolkein” is 3 bits

15

indexes: inverted lists

Inverted lists are currently the most common
indexing technique

• Source file: collection, organized by document
• Inverted file: collection organized by term

– one record per term, listing locations where term occurs

• During evaluation, traverse lists for each query term
– OR: the union of component lists
– AND: an intersection of component lists
– Proximity: an intersection of component lists
– SUM: the union of component lists; each entry has a score

16

inverted files

17

inverted files

18

inverted files: word level

19

indexes and language models

• Assume query likelihood approach

• Jelinek-Mercer smoothing for each query term

• Probably use logs to avoid tiny numbers

P (qt|MD) = λMLestim(qt|MD)+(1−λ)BKGRNDprob

20

document-based approach

• For each document D in collection
– Calculate log P(Q|MD)

• Sort scores
• Drawbacks

– Most documents have no query terms
– Very slow

21

using inverted files

• Simple approach to using inverted list

• Use list to find documents containing any query
term

– All others assumed to have low and constant probability

• For each document in that pool
– Calculate log P(Q|MD)

• Sort scores
• Better

– Only plausible documents considered
– Still requires accessing entire document

22

better use of inverted files

• Recall score being calculated

• Can be done in parts
– Do q1 for every document that contains q1

–
– Then q2 then q3 then …

• Keep array Score[] with cumulative scores

23

better use of inverted files

• For each query word qi
– Fetch its inverted list
– For each document Dk in list

• Calculate log P(qi | Dk)
• Add to accumulator Score[k]

• Sort array
– Or keep running list of top n documents

• Why do the calculation?
– Store pre-computed log P(qi | Dk) in list
– Or store partial results if necessary

• May have to smooth at query time

24

inverted lists: access methods

How is a file of inverted lists accessed?

• B-Tree (B+ Tree, B* Tree, etc)
– Supports exact-match and range-based lookup
– O(log n) lookups to find a list
– Usually easy to expand

• Hash table
– Supports exact-match lookup
– O(1) lookups to find a list
– May be complex to expand

25

inverted lists: access optimizations

• Skip lists:
– A table of contents to the inverted list
– Embedded pointers that jump ahead n documents

• Separating presence information from location
information

– Many operators only need presence information
– Location information takes substantial space (I/O)
– If split,

• reduced I/O for presence operators
• increased I/O for location operators (or larger index)

– Common in CD-ROM implementations

26

wildcard matching

• X* is probably easy (why? when not?)
• What about *X, *X*, X*Y?

• Permuterm index
– Prefix each term X with a ╠
– Rotate each augmented term cyclically (with wraparound)
by
one character, to produce n new terms
– Append an ╣ to the end of each word form
– Insert all forms in the dictionary

• Lookup
– X: search for ╠X╣
– X*: search for all terms beginning with ╠X
– *X: search for all terms beginning with X╠
– *X*: search for all terms beginning with X
– X*Y: search for all terms beginning with Y╠X

27

building indexes

Indexes expensive to update; usually done in batches

• Typical build/update procedure:
– One or more documents arrive to be added / updated
– Documents parsed to generate index modifications
– Each inverted list updated for all documents in the batch

• Concurrency control required
– To synchronize changes to documents and index
– To prevent readers and writers from colliding

• Common to split index into static / dynamic
components

– All updates to dynamic components
– Search both static and dynamic component
– Periodically merge dynamic into static

28

indexes : summary

