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will it rain tomorrow ?will it rain tomorrow ?

I say it will rainI say it will rain
Nick says it will not rainNick says it will not rain
CNN says it will rainCNN says it will rain
FOX says it will not rainFOX says it will not rain

TOMORROW : sunny all day…TOMORROW : sunny all day…
what about Saturday?what about Saturday?
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weighted majority algorithmweighted majority algorithm

Give the “weatherGive the “weather--men” weightsmen” weights
Initial uniform or according to some prior beliefInitial uniform or according to some prior belief

Run the forecast for several days. Every day :Run the forecast for several days. Every day :
Make our prediction by weightedMake our prediction by weighted--majoritymajority--votevote
Get the real outcomeGet the real outcome
Update weightsUpdate weights

““penalizepenalize”” wrong predictorswrong predictors
““rewardreward”” good predictorsgood predictors
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more problemsmore problems

more problemsmore problems
trading stockstrading stocks
IR IR metasearchmetasearch
disease classificationdisease classification

where we need to “train” doctorswhere we need to “train” doctors
common underlying ideacommon underlying idea

generalization of weightedgeneralization of weighted--majoritymajority
why why notnot exactly WMexactly WM

losses are real numbers instead of discrete 0losses are real numbers instead of discrete 0--11
our loss may be a weighted sum of expert lossesour loss may be a weighted sum of expert losses
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this talkthis talk

Hedge algorithm for online Hedge algorithm for online 
allocation [allocation [schapireschapire, , freundfreund ’96]’96]

ApplicationsApplications
On classification : On classification : AdaboostAdaboost
On IR : On IR : metasearchmetasearch algorithm algorithm 
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““how to use expert advice” ?how to use expert advice” ?

N experts (or strategies) N experts (or strategies) 
maintain a set of weights over experts maintain a set of weights over experts 
loop for T episodes  t=1,2,…..,Tloop for T episodes  t=1,2,…..,T

allocate Resources (believe) allocate Resources (believe) -- based on weightsbased on weights
receive loses  receive loses  
reweightreweight the expertsthe experts
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online allocation online allocation -- hedge algorithmhedge algorithm
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why hedgewhy hedge
goal : Hedge loss close to the Loss of the best expert goal : Hedge loss close to the Loss of the best expert 
(bound)(bound)
proof idea :proof idea :

relate episodic Hedge loss with the sum of weightsrelate episodic Hedge loss with the sum of weights

relate cumulate Hedge loss with sum of final weightsrelate cumulate Hedge loss with sum of final weights

relate sum of final weights with loss of the best expertrelate sum of final weights with loss of the best expert
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episodic episodic 
hedge loss hedge loss 
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cumulative cumulative 
hedge loss hedge loss 
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[almost] as good as the best expert[almost] as good as the best expert
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optimalityoptimality
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how to choose how to choose ββ
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ββ = confidence parameter= confidence parameter
think of it as a tradethink of it as a trade--off off 
try to make the bound tighttry to make the bound tight
binary search : perfect expert + (binary search : perfect expert + (ββ=0) =0) 
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that wasn’t so badthat wasn’t so bad

Hedge algorithm for Hedge algorithm for 
online   allocationonline   allocation

ApplicationsApplications
On classification : On classification : AdaboostAdaboost
On IR : On IR : metasearchmetasearch algorithm algorithm 
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boostingboosting

disease classification…. disease classification…. 
get past dataget past data
“train” a  disease“train” a  disease--predictor “doctor” predictor “doctor” 

(“(“hypothesis”,”weakhypothesis”,”weak learner”)learner”)

how good is it  (on training data) ?how good is it  (on training data) ?
where is it wrong ? where is it wrong ? 
train a new predictor to correct train a new predictor to correct 
mistakes for the first onemistakes for the first one
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hedge application : hedge application : AdaBoostAdaBoost
[[schapireschapire, , freundfreund ’96]’96]

HEDGEHEDGE
given : expertsgiven : experts

incoming : losesincoming : loses

reweightreweight: experts: experts

BOOSTINGBOOSTING
given : given : datapointsdatapoints

experts in weakexperts in weak--
learners performancelearners performance

incoming: weak learnersincoming: weak learners
compute error (loss)compute error (loss)

compute “believe” (compute “believe” (ββ))

reweightreweight : : datapointsdatapoints
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AdaBoostAdaBoost -- exampleexample

Start with 
uniform 
distribution on 
data

Weak learners 
= halfplanes
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round 1round 1
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round 2round 2
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round 3round 3
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final hypothesisfinal hypothesis
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AdaBoostAdaBoost -- analysisanalysis

generalization error generalization error 

training error training error 
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2003 Gödel Prize2003 Gödel Prize
YoavYoav Freund and Robert Freund and Robert SchapireSchapire

““The prize was awarded to The prize was awarded to YoavYoav Freund and Robert Freund and Robert SchapireSchapire for for 
their paper "A Decision Theoretic Generalization of Ontheir paper "A Decision Theoretic Generalization of On--Line Line 
Learning and an Application to Boosting," Journal of Computer anLearning and an Application to Boosting," Journal of Computer and d 
System Sciences 55 (1997), pp. 119System Sciences 55 (1997), pp. 119--139. This paper introduced 139. This paper introduced 
AdaBoostAdaBoost, an adaptive algorithm to improve the accuracy of , an adaptive algorithm to improve the accuracy of 
hypotheses in machine learning. The algorithm demonstrated novelhypotheses in machine learning. The algorithm demonstrated novel
possibilities in possibilities in analysinganalysing data and is a permanent contribution to data and is a permanent contribution to 
science even beyond computer science. Because of a combination science even beyond computer science. Because of a combination 
of features, including its elegance, the simplicity of its of features, including its elegance, the simplicity of its 
implementation, its wide applicability, and its striking successimplementation, its wide applicability, and its striking success in in 
reducing errors in benchmark applications even while its theoretreducing errors in benchmark applications even while its theoretical ical 
assumptions are not known to hold, assumptions are not known to hold, the algorithm set off an the algorithm set off an 
explosion of research in the fields of statistics, explosion of research in the fields of statistics, 
artificial intelligence, experimental machine artificial intelligence, experimental machine 
learning, and data mininglearning, and data mining. The algorithm is now widely . The algorithm is now widely 
used in practice. The paper highlights the fact that theoreticalused in practice. The paper highlights the fact that theoretical
computer science continues to be a fount of powerful and entirelcomputer science continues to be a fount of powerful and entirely y 
novel ideas with significant and direct impact even in areas, sunovel ideas with significant and direct impact even in areas, such as ch as 
data analysis, that have been studied extensively by other data analysis, that have been studied extensively by other 
communities.” communities.” 
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what we did last year what we did last year [[AslamAslam, Pavlu, , Pavlu, SavellSavell]]

Hedge algorithm for Hedge algorithm for 
online   allocationonline   allocation

ApplicationsApplications
On classification : On classification : AdaboostAdaboost
On IR : On IR : metasearchmetasearch algorithm algorithm 
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metasearchmetasearch problemproblem
Search for:  CIKM 2003
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search and search and metasearchmetasearch

Search engines:Search engines:
Provide a ranked list of documents.Provide a ranked list of documents.
May provide relevance scores.May provide relevance scores.

MetasearchMetasearch engines:engines:
Query multiple search engines.Query multiple search engines.
May or may not combine results.May or may not combine results.
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metasearchmetasearch: : DogpileDogpile
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metasearchmetasearch: : MetacrawlerMetacrawler
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metasearchmetasearch: Profusion: Profusion
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metasearchmetasearch algorithmsalgorithms

Heuristics and hacks:Heuristics and hacks:
Interleave, average rank, sum scores, etc.Interleave, average rank, sum scores, etc.

Principled models:Principled models:
Bayesian inference, election theory, etc.Bayesian inference, election theory, etc.
OnOn--line combination of expert advice.line combination of expert advice.
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online online metasearchmetasearch
Search for:  CIKM 2003
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hedge application : hedge application : metasearchmetasearch
HEDGEHEDGE

given : expertsgiven : experts

incoming : losesincoming : loses

reweightreweight: experts: experts

METASEARCHMETASEARCH
given : search enginesgiven : search engines

incoming: documentsincoming: documents
compute lossescompute losses

reweightreweight : search engines : search engines 
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a unified modela unified model
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a unified modela unified model
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a unified modela unified model
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ranks importanceranks importance
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• map ranks to values

total loss vs. total precision vs. average precision
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average_value at episode taverage_value at episode t
“trust” in systems change with t“trust” in systems change with t
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modify weightsmodify weights
compute lossescompute losses
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experimentsexperiments
TREC 3,5,6,7,8TREC 3,5,6,7,8

4141--129 systems129 systems
50 queries per TREC50 queries per TREC
MetasearchMetasearch combines combines allall systemssystems

Use TREC judgments as user feedbackUse TREC judgments as user feedback
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metasearchmetasearch -- no feedback (yet)no feedback (yet)

MNZ=CombMNZ(Fox,Shaw,Lee et al)
COND=Condorcet(Aslam,Montague)
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metasearchmetasearch –– TREC8TREC8
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metasearchmetasearch –– TREC 3TREC 3
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metasearchmetasearch –– TREC 5TREC 5
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metasearchmetasearch –– TREC 6TREC 6
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metasearchmetasearch –– TREC 7TREC 7
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metasearchmetasearch –– TREC 3,5,6,7TREC 3,5,6,7
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actually…we do more than actually…we do more than metasearchmetasearch
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actually…we do more than actually…we do more than metasearchmetasearch
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““a unified model for a unified model for metasearchmetasearch, , 
pooling and system evaluation”pooling and system evaluation”
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conclusionconclusion

theoretic explanation of “being adaptive”theoretic explanation of “being adaptive”
simple, elegant, intuitivesimple, elegant, intuitive
usually performs much better than the usually performs much better than the 
boundbound
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END END 
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AdaBoostAdaBoost -- technicaltechnical

Start with uniform Start with uniform distribdistrib DD1 1 ::
At every round  t=1 to T At every round  t=1 to T 

given given DDtt

•• ffind weak hypothesisind weak hypothesis

•• with errorwith error

••

•• compute “belief” in compute “belief” in hhtt

••

•• update distributionupdate distribution

final hypothesis:final hypothesis:
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OnOn--line Setupline Setup
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OnOn--line line MetasearchMetasearch [Aslam, Pavlu, [Aslam, Pavlu, SavellSavell]]
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hedge application : hedge application : metasearchmetasearch

problem : problem : metasearchmetasearch
search enginessearch engines
document judgmentdocument judgment
metaserachmetaserach

[hedge] solution[hedge] solution
search engines are “experts”search engines are “experts”
judgments on documents are “loses”judgments on documents are “loses”
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an IR setupan IR setup
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generalization errorgeneralization error-- based on marginsbased on margins

generalization error [generalization error [Schapire,Freund,Barlett,LeeSchapire,Freund,Barlett,Lee
1998]1998]

training error [training error [Schapire,FreundSchapire,Freund 1996]1996]
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hedge approachhedge approach
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• map ranks to values
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average_valueaverage_value at episode tat episode t
“trust” in systems change with t“trust” in systems change with t

metasearchmetasearch : include already judged docs: include already judged docs
pooling pooling 

system evaluationsystem evaluation

get feedbackget feedback
modify weightsmodify weights

how does it work ?how does it work ?
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actually…we do more than actually…we do more than metasearchmetasearch
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experimentsexperiments
TREC 3,5,6,7,8TREC 3,5,6,7,8

4141--129 systems129 systems
50 queries per TREC50 queries per TREC
metasearchmetasearch uses uses allall systemssystems

use TREC judgments as user feedbackuse TREC judgments as user feedback
system evaluation : incomplete judgmentssystem evaluation : incomplete judgments
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experiments experiments -- relevant docs foundrelevant docs found



6363

experiments experiments -- system evaluation  system evaluation  
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system evaluation system evaluation –– kendall’skendall’s ττ
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metasearchmetasearch -- no feedback (yet)no feedback (yet)

MNZ=CombMNZ(Fox,Shaw,Lee et al)
COND=Condorcet(Aslam,Montague)
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experiments experiments –– metasearchmetasearch –– TREC8TREC8
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metasearchmetasearch –– TREC 3,5,6,7TREC 3,5,6,7
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conclusionconclusion
a powerful machine learning approacha powerful machine learning approach

Hedge = Hedge = AdaBoostAdaBoost corecore

works [usually] better than anything else we’ve works [usually] better than anything else we’ve 
seenseen
true, it uses feedbacktrue, it uses feedback

but without feedback there are provable limitationsbut without feedback there are provable limitations
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Why hedge [Why hedge [schapireschapire, , freundfreund ’96]’96]
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AdaBoostAdaBoost –– distribution updatedistribution update
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ApplicaltionApplicaltion -- metasearchmetasearch



7272

problem setupproblem setup
On the same queryOn the same query
Set of underlying systems Set of underlying systems 
User feedbackUser feedback
GoalGoal

Find relevant documentsFind relevant documents
Produce online Produce online metasearchmetasearch listslists
Perform  online system evaluation Perform  online system evaluation 

We are looking for an adaptive approachWe are looking for an adaptive approach
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motivationmotivation
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our unified modelour unified model
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∑ ∗−∗=

==

docs all

 : FACT

ranksallat  precisionaverageof precision total

))(2(),(
)(

sTPZCsdLOSS
ssTP

loss functionloss function

Average the precision at Average the precision at ALLALL ranksranks
Normalize so ideal system gets TP=1Normalize so ideal system gets TP=1
math is more simplemath is more simple
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pooling pooling –– howtohowto

Naturally “want” top ranksNaturally “want” top ranks
If NON RELEVANT, then a NR in top ranks of the If NON RELEVANT, then a NR in top ranks of the 
system listssystem lists
If RELEVANT, bingo.If RELEVANT, bingo.



7777

system evaluation system evaluation –– howtohowto

assume assume allall docs not judged docs not judged (so many ?)(so many ?) to be to be 
NON RELEVANTNON RELEVANT
compute compute AvegPrecisionAvegPrecision for every systemfor every system
one (or few) very good systems one (or few) very good systems –– use small use small ββ
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metasearchmetasearch -- howtohowto

Compute “pooling value” for each docCompute “pooling value” for each doc
Instead of “select the top doc” for poolingInstead of “select the top doc” for pooling
do “select the top 1000 doc” for do “select the top 1000 doc” for metasearchmetasearch

almost 1000 almost 1000 –– docs already pooled are docs already pooled are 
automatically in top of automatically in top of metasearchmetasearch listlist
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experimentsexperiments
TRECTREC

~100 systems~100 systems
50 queries each competition50 queries each competition

Use TREC Use TREC qrelsqrels as user feedbackas user feedback
incomplete feedbackincomplete feedback

For comparison with depthFor comparison with depth--pooling we use pooling we use 
average number of pools (over queries)average number of pools (over queries)
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experiments experiments -- relevant docs foundrelevant docs found
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experiments experiments -- system evaluation  system evaluation  
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system evaluation system evaluation –– kendall’skendall’s tautau
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metasearchmetasearch -- no feedback (yet)no feedback (yet)
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experiments experiments –– metasearchmetasearch –– TREC8TREC8
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metasearchmetasearch –– TREC 3,5,6,7TREC 3,5,6,7
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conclusionconclusion
A powerful machine learning approachA powerful machine learning approach

Hedge = Hedge = AdaBoostAdaBoost corecore
Works [usually] better than anything else we’ve Works [usually] better than anything else we’ve 
seenseen
True, it uses feedbackTrue, it uses feedback

But without feedback there are provable limitationsBut without feedback there are provable limitations

It is missing a rigorous analysisIt is missing a rigorous analysis
We are not very far away with thatWe are not very far away with that
Need a model assumptionNeed a model assumption
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After conclusion After conclusion –– don’t readdon’t read

KEY:
FIND RELEVANT

DOCS
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testtest
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testtest
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pooling pooling -- comparison with comparison with CormackCormack
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motivationmotivation
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pooling pooling -- howtohowto

Naturally “want” top ranksNaturally “want” top ranks
If NON RELEVANT, then a NR in top ranks of the If NON RELEVANT, then a NR in top ranks of the 
system listssystem lists
If RELEVANT, bingo.If RELEVANT, bingo.
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metasearchmetasearch –– howtohowto
Before the next episodeBefore the next episode

Compute “pooling value” Compute “pooling value” 
for each docfor each doc

Instead of “select the top doc” for poolingInstead of “select the top doc” for pooling
do “select the top 1000 doc” for do “select the top 1000 doc” for metasearchmetasearch

almost 1000 almost 1000 –– docs already pooled are docs already pooled are 
automatically in top of automatically in top of metasearchmetasearch listlist
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““total” total” precizionprecizion

Average the precision at Average the precision at ALLALL ranksranks
Normalize so ideal system gets TP=1Normalize so ideal system gets TP=1

math is more simplemath is more simple
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MetasMetas –– trec3trec3
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MetasMetas –– trec5trec5
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MetasMetas –– trec6trec6
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MetasMetas –– trec7trec7
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MetasMetas –– trec3trec3
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