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www IR

many slides courtesy Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze @ STANFORD
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache, hardware, systems
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(a)  Source:  Jupiter Communications.

72%

88%

96%

Product Info.
Search

Web Search

Email

top online activities
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• Total Internet users = 111 M

• Do a search on any given day = 33 M

• Have used Internet to search = 85%

//www.pewinternet.org/reports/toc.asp?Report=64

US users (2002)
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• Corpus:The publicly accessible Web: static + dynamic

• Goal: Retrieve high quality results relevant to the user’s need
– (not docs!)

• Need
– Informational – want to learn about something (~40%)

– Navigational – want to go to that page (~25%)

– Transactional – want to do something (web-mediated) (~35%)

• Access a  service

• Downloads 

• Shop
– Gray areas

• Find a good hub
• Exploratory search “see what’s there” 

Low hemoglobin

United Airlines

Tampere weather
Mars surface images

Nikon CoolPix

Car rental Finland

search on the web
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– Static pages (documents)

• text, mp3, images, video, ...

– Dynamic pages = generated on request

• data base access

• “the invisible web”
• proprietary content, etc.

results
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http://www.cism.it/cism/hotels_2001.htm

Host name

Page name

Access method

URL = Universal Resource Locator

terminology
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• Immense amount of content 

– 2-10B static pages, doubling every 8-12 months

– Lexicon Size: 10s-100s of millions of words

• Authors galore (1 in 4 hosts run a web server)

http://www.netcraft.com/Survey

scale
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• Languages/Encodings

– Hundreds (thousands ?) of languages, W3C encodings: 55 
(Home pages (1997): English 82%, Next 15: 13% 
[Babe97]

– Google (mid 2001): English: 53%

• Document & query topic

Popular Query Topics (from 1 mil Google queries, 06/2000)

1.8%Regional: Europe7.2%Business

…………

2.3%Business: Industries7.3%Recreation

3.2%Computers: Internet8%Adult

3.4%Computers: Software8.7%Society

4.4%Adult: Image Galleries10.3%Regional

5.3%Regional: North America13.8%Computers

6.1%Arts: Music14.6%Arts

diversity
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720K pages from 270 popular sites sampled daily from 
Feb 17 – Jun 14, 1999

Mathematically, what
does this seem to be?

rate of change
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• Distributed authorship

– Millions of people creating pages with their own 
style, grammar, vocabulary, opinions, facts, 
falsehoods …

– Not all have the purest motives in providing high-
quality information - commercial motives drive 
“spamming” - 100s of millions of pages.

– The open web is largely a marketing tool.

• IBM’s home page does not contain computer.

web idiosyncrasies
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• Significant duplication

– Syntactic - 30%-40% (near) duplicates 
[Brod97, Shiv99b]

– Semantic 

• High linkage 

– ˜ 8 links/page in the average 

• Complex graph topology

– Not a small world; bow-tie structure [Brod00]

• More on these corpus characteristics later

– how do we measure them?

www
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• ill-defined queries
– Short 

• AV 2001: 2.54 terms avg, 80% ¡ 3 words) 

– Imprecise terms

– Sub-optimal syntax (80% queries without operator)

– Low effort

• specific behavior
– 85% look over one result screen only (mostly above the fold)

– 78% of queries are not modified (one query/session)

– Follow links – “the scent of information” ...

• wide variance in
– Needs

– Expectations

– Knowledge

– Bandwidth

web search users
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• First generation -- use only “on page”, text data
– Word frequency,  language

• Second generation -- use off-page, web-specific data
– Link (or connectivity) analysis
– Click-through data (What results people click on)
– Anchor-text (How people refer to this page)

• Third generation -- answer “the need behind the query”
– Semantic analysis -- what is this about?
– Focus on user need, rather than on query
– Context determination
– Helping the user
– Integration of search and text analysis

1995-1997 AV, 
Excite, Lycos, etc

From 1998-2003. 
Made popular by 
Google

present

evolution of search engines
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• Extended Boolean model 
– Matches: exact, prefix, phrase,…
– Operators: AND, OR, AND NOT, NEAR, …
– Fields: TITLE:, URL:, HOST:,…
– AND is somewhat easier to implement, maybe preferable as 

default for short queries

• Ranking
– TF like factors: TF, explicit keywords, words in title, explicit

emphasis (headers), etc  
– IDF factors: IDF, total word count in corpus, frequency in query

log, frequency in language 

first generation ranking
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• Ranking -- use off-page, web-specific data
– Link (or connectivity) analysis

– Click-through data (What results people click on)

– Anchor-text (How people refer to this page)

• Crawling
– Algorithms to create the best possible corpus

second generation search engine
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•Idea: mine hyperlink information in the Web

•Assumptions:

– Links often connect related pages

– A link between pages is a recommendation “people vote with their 

links”

connectivity analysis
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•Query language determination

•Different ranking
– (if query Japanese do not return English)

•Hard & soft matches
– Personalities (triggered on names)

– Cities (travel info, maps)

– Medical info (triggered on names and/or results)

– Stock quotes, news  (triggered on stock symbol)

– Company info, …

•Better integration of Search and Text Analysis

third generation search engine
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•Context determination 
– spatial (user location/target location)

– query stream (previous queries)

– personal (user profile) 

– explicit (vertical search, family friendly)

– implicit (use AltaVista from AltaVista France)

•Context use
– Result restriction

– Ranking modulation

context determination
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•Two aspects
– Geo-coding

• encode geographic coordinates to make search effective

– Geo-parsing

• the process of identifying geographic context.

•Geo-coding
– Geometrical hierarchy (squares)

– Natural hierarchy (country, state, county, city, zip-codes, etc) 

•Geo-parsing
– Pages (infer from phone nos, zip, etc).  About 10% feasible.

– Queries (use dictionary of place names) 

– Users

• From IP data

– Mobile phones 

• In its infancy, many issues (display size, privacy, etc)

spatial context: geo-search
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AV barry bonds
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Lycos palo alto
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Geo-search example
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• UI

• spell checking

• query refinement

• query suggestion

• context transfer …

helping the user
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context sensitive spell check
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• Citation frequency

• Co-citation coupling frequency
– Cocitations with a given author measures “impact”
– Cocitation analysis [Mcca90]

• Bibliographic coupling frequency

– Articles that co-cite the same articles are related

• Citation indexing
– Who is a given author cited by? (Garfield [Garf72])

citation analysis
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• First generation: using link counts as simple measures 
of popularity.

• Two basic suggestions:
– Undirected popularity:

• Each page gets a score = the number of in-links plus the 
number of out-links (3+2=5).

– Directed popularity:

• Score of a page = number of its in-links (3).

query-independent ordering
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• First retrieve all pages meeting the text query (say 
venture capital).

• Order these by their link popularity (either variant on 
the previous page).

query processing
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• Exercise: How do you spam each of the following 
heuristics so your page gets a high score?

• Each page gets a score = the number of in-links plus 
the number of out-links.

• Score of a page = number of its in-links.

spamming simple popularity
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache, hardware, systems
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• Imagine a browser doing a random walk on web 
pages:

– Start at a random page

– At each step, go out of the current page along one of the links 
on that page, equiprobably

• “In the steady state” each page has a long-term visit 
rate - use this as the page’s score.

1/3
1/3
1/3

pagerank scoring
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Not quite enough

• The web is full of dead-ends.
– Random walk can get stuck in dead-ends.

– Makes no sense to talk about long-term visit rates.

??

• At each step, with probability 10%, jump to a random 
web page.

• With remaining probability (90%), go out on a 
random link.

– If no out-link, stay put in this case.

Teleporting
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Result of teleporting

• Now cannot get stuck locally.

• There is a long-term rate at which any page is visited 
(not obvious, will show this).

• How do we compute this visit rate?
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Markov chains

• A Markov chain consists of n states, plus an n×n
transition probability matrix P.

• At each step, we are in exactly one of the states.

• For 1 ≤ i,j ≤ n, the matrix entry Pij tells us the 
probability of j being the next state, given we are 
currently in state i. 

i jPij
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.1
1

=∑
=

ij

n

j
P

Markov chains

• Clearly, for all i,

• Markov chains are abstractions of random walks.

• Exercise: represent the teleporting random walk from 
3 slides ago as a Markov chain, for this case: 
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Ergodic Markov chains

• A Markov chain is ergodic if
– you have a path from any state to any other

– you can be in any state at every time step, with non-zero 
probability.

Not
ergodic
(even/
odd).
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Ergodic Markov chains

• For any ergodic Markov chain, there is a unique long-
term visit rate for each state.

– Steady-state distribution.

• Over a long time-period, we visit each state in 
proportion to this rate.

• It doesn’t matter where we start.
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Probability vectors

• A probability (row) vector x = (x1, … xn) tells us 
where the walk is at any point.

• E.g., (000…1…000) means we’re in state i.
i n1

�More generally, the vector x = (x1, … xn)

means thewalk is in state i with probability xi.

.1
1

=∑
=

n

i
ix
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Change in probability vector

• If the probability vector is  x = (x1, … xn) at this step, 
what is it at the next step?

• Recall that row i of the transition prob. Matrix P tells 
us where we go next from state i.

• So from x, our next state is distributed as xP.
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Computing the visit rate

• The steady state looks like a vector of probabilities a
= (a1, … an):

– ai is the probability that we are in state i.

2
3/4

11/4 3/4
1/4

For this example, a1=1/4 and a2=3/4.
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How do we compute this vector?

• Let a = (a1, … an) denote the row vector of steady-
state probabilities.

• If we our current position is described by a, then the 
next step is distributed as aP.

• But a is the steady state, so a=aP.

• Solving this matrix equation gives us a.
– So a is the (left) eigenvector for P.

– (Corresponds to the “principal” eigenvector of P with the largest 
eigenvalue.)
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One way of computing a

• Recall, regardless of where we start, we eventually 
reach the steady state a.

• Start with any distribution (say x=(10…0)).

• After one step, we’re at xP;

• after two steps at xP2 , then xP3 and so on.

• “Eventually” means for “large” k, xPk = a.

• Algorithm: multiply x by increasing powers of P until 
the product looks stable.
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Pagerank summary

• Preprocessing:
– Given graph of links, build matrix P.

– From it compute a.

– The entry ai is a number between 0 and 1: the pagerank of page 
i.

• Query processing:
– Retrieve pages meeting query.

– Rank them by their pagerank.

– Order is query-independent.

• Pagerank is used in google, but so are many other 
clever heuristics

– more on these heuristics later.

In Reality



44

Pagerank

• Pagerank computation
– Random walk on the web graph

– Teleport operation to get unstuck from dead ends

⇒ Steady state visit rate for each web page

– Call this its pagerank score

• computed from an eigenvector computation (linear 
system solution)
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Pagerank recap

• Pagerank usage
– Get pages matching text query

– Return them in order of pagerank scores

– This order is query-independent

– Can combine arithmetically with text-based scores

• Pagerank is a global property
– Your pagerank score depends on “everybody” else
– Harder to spam than simple popularity counting
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Topic Specific Pagerank [Have02]

• Conceptually, we use a random surfer who teleports, 
with say 10% probability, using the following rule:

• Selects a category (say, one of the 16 top level ODP 
categories) based on a query & user -specific distribution over 
the categories

• Teleport to a page uniformly at random within the chosen 
category

– Sounds hard to implement: can’t compute PageRank at query 
time!
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Topic Specific Pagerank [Have02]

• Implementation
• offline:Compute pagerank distributions wrt to individual

categories

Query independent model as before

Each page has multiple pagerank scores – one for 
each ODP category, with teleportation only to 
that category

• online: Distribution of weights over categories computed by 
query context classification

Generate a dynamic pagerank score for each page -
weighted sum of category-specific pageranks
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Influencing PageRank
(“Personalization”)

• Input: 
– Web graph W

– influence vector v

v : (page → degree of influence)

• Output:

– Rank vector r: (page → page importance wrt v )

• r = PR(W , v)
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Non-uniform Teleportation

Sports

Teleport with 10% probability to a Sports page
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Interpretation of Composite Score

• For a set of personalization vectors {vj}

∑j [wj · PR(W , vj)] = PR(W , ∑j [wj · vj]) 

• Weighted sum of rank vectors itself forms a valid rank 

vector, because PR() is linear wrt vj
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Interpretation

Sports

10% Sports teleportation
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Interpretation

Health

10% Health teleportation
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Interpretation

Sports

Health

pr = (0.9 PRsports + 0.1 PRhealth) gives you:
9% sports teleportation, 1% health teleportation
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache, hardware, systems
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Hyperlink-Induced Topic Search 
(HITS) - Klei98

• In response to a query, instead of an ordered list of 
pages each meeting the query, find two sets of inter-
related pages:

– Hub pages are good lists of links on a subject.

• e.g., “Bob’s list of cancer-related links.”
– Authority pages occur recurrently on good hubs for the subject.

• Best suited for “broad topic” queries rather than for 
page-finding queries.

• Gets at a broader slice of common opinion.
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Hubs and Authorities

• Thus, a good hub page for a topic points to many 
authoritative pages for that topic.

• A good authority page for a topic is pointed to by 
many good hubs for that topic.

• Circular definition - will turn this into an iterative 
computation.
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The hope

                                                    AT&T
 Alice

                                  Sprint
Bob
                                  MCI

Authorities
Hubs

Long distance telephone companies
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High-level scheme

• Extract from the web a base set of pages that could
be good hubs or authorities.

• From these, identify a small set of top hub and 
authority pages;
→ iterative algorithm.
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Base set

• Given text query (say browser), use a text index to 
get all pages containing browser.

– Call this the root set of pages. 

• Add in any page that either
– points to a page in the root set, or

– is pointed to by a page in the root set.

• Call this the base set.
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Visualization

Root
set

Base set
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Assembling the base set

• Root set typically 200-1000 nodes.

• Base set may have up to 5000 nodes.

• How do you find the base set nodes?
– Follow out-links by parsing root set pages.

– Get in-links (and out-links) from a connectivity server.

– (Actually, suffices to text-index strings of the form href=“URL”
to get in-links to URL.)
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Distilling hubs and authorities

• Compute, for each page x in the base set, a hub score
h(x) and an authority score a(x).

• Initialize: for all x, h(x)←1; a(x) ←1;

• Iteratively update all h(x), a(x);

• After iterations
– output pages with highest h() scores as top hubs

– highest a() scores as top authorities.
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Iterative update

• Repeat the following updates, for all x:

∑←
yx
yaxh

a

)()(

∑←
xy
yhxa

a

)()(

x

x
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Scaling

• To prevent the h() and a() values from getting too 
big, can scale down after each iteration.

• Scaling factor doesn’t really matter:
– we only care about the relative values of the scores.
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How many iterations?

• Claim: relative values of scores will converge after a 
few iterations:

– in fact, suitably scaled, h() and a() scores settle into a steady 
state!

– proof of this comes later.

• We only require the relative orders of the h() and a()
scores - not their absolute values.

• In practice, ˜5 iterations get you close to stability.
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Things to note

• Pulled together good pages regardless of language of 
page content.

• Use only link analysis after base set assembled
– iterative scoring is query-independent.

• Iterative computation after text index retrieval -
significant overhead.
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Proof of convergence

• n×n adjacency matrix A:
– each of the n pages in the base set has a row and column in the 

matrix.

– Entry Aij = 1 if page i links to page j, else = 0.

1 2

3

1      2      3
1

2

3

0      1      0

1      1      1

1      0      0
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Hub/authority vectors

• View the hub scores h() and the authority scores a() as 
vectors with n components.

• Recall the iterative updates

∑←
yx
yaxh

a

)()(

∑←
xy
yhxa

a

)()(
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Rewrite in matrix form

• h=Aa.

• a=Ath.
Recall At

is the 
transpose 

of A. 

Substituting, h=AAth and a=AtAa.

Thus, h is an eigenvector of AAt and
a is an eigenvector of AtA.
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Tag/position heuristics

• Increase weights of terms 
– in titles

– in tags

– near the beginning of the doc, its chapters and 
sections
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Here is a great picture 
of a tiger

Tiger image

Cool tiger webpage

The text in the vicinity of a hyperlink is
descriptive of the page it points to.

Anchor text
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• When indexing a page, also index the anchor text of 
links pointing to it.

– Retrieve a page when query matches its anchor text.

• To weight links in the hubs/authorities algorithm. 

• Anchor text usually taken to be a window of 6-8 
words around a link anchor.

Anchor text
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• When indexing a document D, include anchor text from links 
pointing to D. 

• Can sometimes have unexpected side effects - e.g., evil 
empire.

• Can index anchor text with less weight.

www.ibm.com

Armonk, NY-based 
computer

giant IBM announced today

Joe’s computer hardware links
Compaq
HP
IBM

Big Blue today announced
record profits for the 

quarter

indexing anchor text
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• In hub/authority link analysis, can match anchor text to query, 
then weight link.

∑←
yx
yaxh

a

)()(

∑←
xy
yhxa

a

)()( )(),()(

)(),()(

yhyxwxa

yayxwxh

xy

yx

⋅=

⋅=

∑

∑

a

a

weighting anchor text
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• What is w(x,y)?

• Should increase with the number of query terms in anchor 
text.

– E.g.: 1+ number of query terms.

www.ibm.comArmonk, NY-based computer
giant IBM announced todayx y

Weight of this 
link for query 
computer is 2.

weighting anchor text
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• Recall basic algorithm:
– Iteratively update all h(x), a(x);

– After iteration, output pages with

• highest h() scores as top hubs

• highest a() scores as top authorities.

• Now use weights in iteration.

• Raises scores of pages with “heavy” links.

Weighted hub/authority computation
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• Lots of pages in a site give varying aspects of information 
on the same topic.

Treat portions of web-sites as a 

single entity for score computations.

Web sites, not pages
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• Links on a page tend to point to the same topics as 
neighboring links.

– Break pages down into pagelets (say separate by tags)

– compute a hub/authority score for each pagelet.

• Example
– Ron Fagin’s links

– Logic links

• Moshe Vardi’s logic page

• International logic symposium

• Paper on modal logic

• ….
– My favorite football team

• The 49ers

• Why the Raiders suck

• Steve’s homepage

• The NFL homepage

Link neighborhoods
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Pagerank
Pros

– Hard to spam
– Computes quality signal for all pages

Cons
– Non-trivial to compute
– Not query specific
– Doesn’t work on small graphs

Proven to be effective for general 
purpose ranking

HITS & Variants
Pros

– Easy to compute, real-time execution 
is hard [Bhar98b, Stat00]

– Query specific
– Works on small graphs

Cons
– Local graph structure can be 

manufactured (spam!)
– Provides a signal only when there’s 

direct connectivity (e.g., home pages)

Well suited for supervised directory 
construction

comparison
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache, hardware, systems
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• For each query Q, keep track of which docs in the 
results are clicked on

• On subsequent requests for Q, re-order docs in results 
based on click-throughs

• First due to DirectHit →AskJeeves

• Relevance assessment based on
– Behavior/usage

– vs. content

behavior-based ranking
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Queries

Docs

q

j

Bqj = number of times doc j
clicked-through on query q

When query q issued again, order docs by Bqj values.

Query-doc popularity matrix B
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• Maintain a term-doc popularity matrix C
– as opposed to query-doc popularity

– initialized to all zeros

• Each column represents a doc j
– If doc j clicked on for query q, update Cj← Cj +ε q (here q is 

viewed as a vector).

• On a query q’, compute its cosine proximity to Cj for all 
j. 

• Combine this with the regular text score.

vector space implementation
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• Normalization of Cj after updating

• Assumption of query compositionality
– “white house” document popularity derived from “white” and “house”

• Updating - live or batch?

• Basic assumption
– Relevance can be directly measured by number of click throughs

– Valid?

– Click through to docs that turn out to be non-relevant: what does 
a click mean?

– Self-perpetuating ranking

– Spam

– All votes count the same

– More on this in recommendation systems

Issues
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• Time spent viewing page
– Difficult session management

– Inconclusive modeling so far

• Does user back out of page?

• Does user stop searching?

• Does user transact?

Variants
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache, hardware, systems
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• Crawl order

• Filtering duplicates

• Mirror detection 

Crawling and Corpus Construction
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• How to crawl? 
– Quality: “Best” pages first

– Efficiency: Avoid duplication (or near duplication)

– Etiquette: Robots.txt, Server load concerns

• How much to crawl? How much to index?
– Coverage: How big is the Web? How much do we cover? 

– Relative Coverage: How much do competitors have?

• How often to crawl?
– Freshness: How much has changed? 

– How much has really changed? (why is this a different question?)

Crawling Issues
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• Best pages first
– Potential quality measures:

• Final Indegree

• Final Pagerank

– Crawl heuristic:

• BFS

• Partial Indegree

• Partial Pagerank

• Random walk

Crawl Order
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Perc. 
overlap
with
best
x%
by
indegree

x% crawled by O(u)

Perc. 
overlap
with
best
x%
by
pagerank

x% crawled by O(u)

Stanford Web Base (179K, 1998)
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BFS crawling brings in high quality
pages early in the crawl

Web Wide Crawl (328M pages, 2000)
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BFS depth = 2
Normal avg outdegree = 10

100 URLs on the queue 
including a spam page.

Assume the spammer is 
able to generate dynamic 
pages with 1000 outlinks

Start
Page

Start
Page

BFS depth = 3
2000 URLs on the queue
50% belong to the spammer

BFS depth = 4
1.01 million URLs on the 
queue
99% belong to the spammer

BFS and spam
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• Motives
– Commercial, political, religious, lobbies

– Promotion funded by advertising budget

• Operators
– Contractors (Search Engine Optimizers) for lobbies, companies

– Web masters

– Hosting services

• Forum
– Web master world ( www.webmasterworld.com )

• Search engine specific tricks 

• Discussions about academic papers ☺

Adversarial IR (Spam)
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• Cloaking

– Serve fake content to search engine 
robot

– DNS cloaking: Switch IP address. 
Impersonate 

• Doorway pages

– Pages optimized for a single keyword 
that re-direct to the real target page

• Keyword Spam

– Misleading meta-keywords, excessive 
repetition of a term, fake “anchor text”

– Hidden text with colors, CSS tricks, 
etc.

• Link spamming

– Mutual admiration societies, hidden 
links, awards

– Domain flooding: numerous domains 
that point or re-direct to a target page

• Robots

– Fake click stream

– Fake query stream

– Millions of submissions via Add-Url

Is this a Search
Engine spider?

Y

N

SPAM

Real
Doc

Cloaking

Meta-Keywords = 
“… London hotels, hotel, holiday inn, 
hilton, discount, booking, 
reservation, sex, mp3, 
britney spears, viagra, …”

A few spam technologies
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Examples from July 2002

auctions.hitsoffice.com/

www.ebay.com/Pornographic 
Content

Can you trust words on the page?
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Search Engine Optimization I
Adversarial IR

(“search engine wars”)

Search Engine Optimization I
Adversarial IR

(“search engine wars”)
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Search Engine Optimization II
Tutorial on

Cloaking & Stealth
Technology

Search Engine Optimization II
Tutorial on

Cloaking & Stealth
Technology
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• Quality signals - Prefer authoritative pages based on:
– Votes from authors (linkage signals)

– Votes from users (usage signals)

• Policing of URL submissions
– Anti robot test 

•Limits on meta-keywords

•Robust link analysis
– Ignore statistically implausible linkage (or text)

– Use link analysis to detect spammers (guilt by association)

•Spam recognition by machine learning
– Training set based on known spam

•Family friendly filters
– Linguistic analysis, general classification techniques, etc.

– For images: flesh tone detectors, source text analysis, etc.

•Editorial intervention
– Blacklists

– Top queries audited

– Complaints addressed

The war against spam
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• Duplication: Exact match with fingerprints

• Near-Duplication: Approximate match

• Compute syntactic similarity with an edit-distance measure

• Use similarity threshold to detect near-duplicates

– E.g.,  Similarity > 80% => Documents are “near duplicates”
– Not transitive though sometimes used transitively

duplicates/near duplicates detection
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– Features:
• Segments of a document (natural or artificial breakpoints) 

[Brin95]

• Shingles (Word N-Grams)  [Brin95, Brod98]

“a rose is a rose is a rose” =>
a_rose_is_a

rose_is_a_rose

is_a_rose_is 

– Similarity Measure
• TFIDF [Shiv95]

• Set intersection [Brod98]

(Specifically, Size_of_Intersection / Size_of_Union )

near similarity
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• Computing exact set intersection of shingles between 
all pairs of documents is expensive and infeasible

– Approximate using a cleverly chosen subset of shingles from each (a 
sketch)

•Estimate size_of_intersection / size_of_union based on 
a short sketch ( [Brod97, Brod98] )

– Create a “sketch vector” (e.g., of size 200) for each document

– Documents which share more than t (say 80%) corresponding vector 
elements are similar

– For doc D, sketch[i] is computed as follows:

• Let f map all shingles in the universe to 0..2m (e.g., f = 
fingerprinting)

• Let pi be a specific random permutation on 0..2m

• Pick sketch[i] := MIN pi ( f(s) )  over all shingles s in D

Shingles + Set Intersection
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Document 1

264

264

264

264

Start with 64 bit shingles

Permute on the number line

with πi

Pick the min value

Computing Sketch[i] for doc1
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Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?
Test for 200 random permutations: π1, π2,… π200

A B

Sketch comparison
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Document 1 Document 2

264
264
264
264

264
264

264
264

A = B iff the shingle with the MIN value in the union of 
Doc1 and Doc2 is common to both (I.e., lies in the 
intersection)

This happens with probability:

Size_of_intersection / Size_of_union

BA

Sketch comparison
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• Mirroring is systematic replication of web pages across 
hosts.

– Single largest cause of duplication on the web

• Host1/a and Host2/b are mirrors iff

For all (or most) paths p such that when

http://Host1/ a / p exists

http://Host2/ b / p exists as well

with identical (or near identical) content, and vice 
versa.

mirrors
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• http://www.elsevier.com/ and http://www.elsevier.nl/

• Structural Classification of Proteins
– http://scop.mrc-lmb.cam.ac.uk/scop

– http://scop.berkeley.edu/

– http://scop.wehi.edu.au/scop

– http://pdb.weizmann.ac.il/scop

– http://scop.protres.ru/

mirror detection
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Auctions.msn.com Auctions.lycos.com

Aug 

mirrors: repackaged
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• Why detect mirrors?
– Smart crawling 

• Fetch from the fastest or freshest server

• Avoid duplication

– Better connectivity analysis 

• Combine inlinks

• Avoid double counting outlinks

– Redundancy in result listings

• “If that fails you can try: ¡mirror¿/samepath”

– Proxy caching

mirrors
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• Maintain clusters of subgraphs

• Initialize clusters of trivial subgraphs

– Group near-duplicate single documents into a cluster

• Subsequent passes
– Merge clusters of the same cardinality and corresponding linkage

– Avoid decreasing cluster cardinality

• To detect mirrors we need:
– Adequate path overlap 

– Contents of corresponding pages within a small time range

bottom up mirror detection
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• E.g.,
www.synthesis.org/Docs/ProjAbs/synsys/synalysis.html

synthesis.stanford.edu/Docs/ProjAbs/synsys/quant-dev-new-teach.html

• What features could indicate mirroring?
– Hostname similarity: 

• word unigrams and bigrams: — www, www.synthesis, synthesis, …˝
– Directory similarity: 

• Positional path bigrams — 0:Docs/ProjAbs, 1:ProjAbs/synsys, … ˝

– IP address similarity: 

• 3 or 4 octet overlap

• Many hosts sharing an IP address => virtual hosting by an ISP

– Host outlink overlap

– Path overlap 

• Potentially, path + sketch overlap

top down mirror detection



111

www.synthesis.org

a b

c
d

synthesis.stanford.edu

a b

c
d

www.synthesis.org/Docs/ProjAbs/synsys/synalysis.html
www.synthesis.org/Docs/ProjAbs/synsys/visual-semi-quant.html
www.synthesis.org/Docs/annual.report96.final.html
www.synthesis.org/Docs/cicee-berlin-paper.html
www.synthesis.org/Docs/myr5
www.synthesis.org/Docs/myr5/cicee/bridge-gap.html
www.synthesis.org/Docs/myr5/cs/cs-meta.html
www.synthesis.org/Docs/myr5/mech/mech-intro-mechatron.html
www.synthesis.org/Docs/myr5/mech/mech-take-home.html
www.synthesis.org/Docs/myr5/synsys/experiential-learning.html
www.synthesis.org/Docs/myr5/synsys/mm-mech-dissec.html
www.synthesis.org/Docs/yr5ar
www.synthesis.org/Docs/yr5ar/assess
www.synthesis.org/Docs/yr5ar/cicee
www.synthesis.org/Docs/yr5ar/cicee/bridge-gap.html
www.synthesis.org/Docs/yr5ar/cicee/comp-integ-analysis.html

synthesis.stanford.edu/Docs/ProjAbs/deliv/high-tech-…
synthesis.stanford.edu/Docs/ProjAbs/mech/mech-enhanced…
synthesis.stanford.edu/Docs/ProjAbs/mech/mech-intro-…
synthesis.stanford.edu/Docs/ProjAbs/mech/mech-mm-case-…
synthesis.stanford.edu/Docs/ProjAbs/synsys/quant-dev-new-…
synthesis.stanford.edu/Docs/annual.report96.final.html
synthesis.stanford.edu/Docs/annual.report96.final_fn.html
synthesis.stanford.edu/Docs/myr5/assessment
synthesis.stanford.edu/Docs/myr5/assessment/assessment-…
synthesis.stanford.edu/Docs/myr5/assessment/mm-forum-kiosk-…
synthesis.stanford.edu/Docs/myr5/assessment/neato-ucb.html
synthesis.stanford.edu/Docs/myr5/assessment/not-available.html
synthesis.stanford.edu/Docs/myr5/cicee
synthesis.stanford.edu/Docs/myr5/cicee/bridge-gap.html
synthesis.stanford.edu/Docs/myr5/cicee/cicee-main.html
synthesis.stanford.edu/Docs/myr5/cicee/comp-integ-analysis.html

mirror detection by urls
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache,hardware, systems
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• Connectivity Server
– Fast access to links to support for link analysis

• Term Vector Database
– Fast access to document vectors to augment link analysis

www infrastructure
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• Fast web graph access to support connectivity analysis

• Stores mappings in memory from
• URL to outlinks, URL to inlinks

• Applications
• HITS, Pagerank computations

• Crawl simulation

• Graph algorithms: web connectivity, diameter etc.

– more on this later
• Visualizations 

connectivity server
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Input

Graph
algorithm

+
URLs

+
Values

URLs
to
FPs
to
IDs

Execution

Graph
algorithm
runs in
memory

IDs
to
URLs

Output

URLs
+

Values

Translation Tables on Disk

URL text: 9 bytes/URL (compressed from ˜80 
bytes ) 

FP(64b) -> ID(32b): 5 bytes

ID(32b) -> FP(64b): 8 bytes

ID(32b) -> URLs: 0.5 bytes

connectivity server
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ID assignment

• Partition URLs into 3 sets, 

sorted lexicographically

– High: Max degree > 254

– Medium: 254 > Max degree > 24

– Low: remaining (75%)

• IDs assigned in sequence 
(densely)

E.g., HIGH IDs: 
Max(indegree , outdegree) > 254

ID URL

…

9891 www.amazon.com/

9912 www.amazon.com/jobs/

…

9821878 www.geocities.com/

…

40930030    www.google.com/

…

85903590    www.yahoo.com/

Adjacency lists
� In memory tables for Outlinks, 

Inlinks

� List index maps from a Source 
ID to start of adjacency list
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Adjacency List Compression - I

…

…

98
132
153
98
147
153

…

…

104
105
106

List
Index

Sequence
of

Adjacency
Lists

…

…

-6
34
21
-8
49
6

…

…

104
105
106

List
Index

Delta
Encoded

Adjacency
Lists

• Adjacency List: 
- Smaller delta values are exponentially more frequent (80% to same host)
- Compress deltas with variable length encoding (e.g., Huffman)

• List Index pointers: 32b for high, Base+16b for med, Base+8b for low
- Avg = 12b per pointer
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Adjacency List Compression - II

• Inter List Compression
– Basis: Similar URLs may share links 

• Close in ID space => adjacency lists may overlap

– Approach

• Define a representative adjacency list for a block of IDs

– Adjacency list of a reference ID

– Union of adjacency lists in the block

• Represent adjacency list in terms of deletions and additions when 
it is cheaper to do so

– Measurements

• Intra List + Starts: 8-11 bits per link (580M pages/16GB RAM)

• Inter List: 5.4-5.7 bits per link (870M pages/16GB RAM.)
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Term Vector Database

• Fast access to 50 word term vectors for web pages
– Term Selection: 

• Restricted to middle 1/3rd of lexicon by document frequency

• Top 50 words in document by TF.IDF. 

– Term Weighting: 

• Deferred till run-time (can be based on term freq, doc freq, doc 
length)

• Applications
– Content + Connectivity analysis (e.g., Topic Distillation)

– Topic specific crawls

– Document classification

• Performance
– Storage: 33GB for 272M term vectors

– Speed: 17 ms/vector on AlphaServer 4100 (latency to read a disk block)
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• Issues
– The web is really infinite 

• Dynamic content, e.g., calendar 

– Static web contains syntactic duplication, mostly due to 
mirroring (˜20-30%)

– Some servers are seldom connected

• Who cares?
• Media, and consequently the user

• Engine design

• Engine crawl policy. Impact on recall.

the size of the web
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•The relative size of search engines 
– The notion of a page being indexed is still reasonably well defined.  

– Already there are problems

• Document extension: e.g. Google indexes pages not yet crawled 
by indexing anchortext.

• Document restriction: Some engines restrict what is indexed 
(first n words, only relevant words, etc.) 

•The coverage of a search engine relative to another 
particular crawling process.

•The ultimate coverage associated to a particular 
crawling process and a given list of seeds. 

what to measure
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• Random queries

• Random searches

• Random IP addresses

• Random walks

www size: statistical measures
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• Ideal strategy: Generate a random URL and check for 
containment in each index.

• Problem: Random URLs are hard to find!

• Sample URLs randomly from each engine
– 20,000 random URLs from each engine

• Issue random conjunctive query with ¡200 results

• Select a random URL from the top 200 results

• Test if present in other engines. 
– Query with 8 rarest words. Look for URL match

• Compute intersection & size ratio

Intersection =  x% of E1  =  y% of E2

E1/E2 = y/x

E1 E2

URL sampling via Random Queries

• Issues
– Random narrow queries may bias towards long documents

(Verify with disjunctive queries)

– Other biases induced by process



124

• Capture – Recapture technique
– Assumes engines get independent random subsets of the Web

E2 contains x% of E1.
Assume, E2 contains x% 
of the Web as well

Knowing size of E2 
compute size of the Web
Size of the Web = 100*E2/x

E1 E2

WEB

Bharat & Broder: 200 M (Nov 97), 275 M (Mar 98) 
Lawrence & Giles: 320 M (Dec 97)

www size: estimation
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• Choose random searches extracted from a local log [Lawr97] or 
build “random searches” [Note02]

– Use only queries with small results sets. 

– Count normalized URLs in result sets.

– Use ratio statistics

• Advantage:
– Might be a good reflection of the human perception of coverage

• 575 & 1050 queries from the NEC RI employee logs

• 6 Engines in ’98, 11 in ‘99
• Implementation:

– Restricted to queries with ¡ 600 results in total

– Counted URLs from each engine after verifying query match

– Computed size ratio & overlap for individual queries 

– Estimated index size ratio & overlap by averaging over all queries

• Issues
– Samples are correlated with source of log

– Duplicates

– Technical statistical problems (must have non-zero results, ratio average)

Random Searches
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Queries from Lawrence and Giles 
study

• 1. adaptive access control 

• 2. neighborhood preservation 
topographic 

• 3. hamiltonian structures 

• 4. right linear grammar 

• 5. pulse width modulation neural 

• 6. unbalanced prior probabilities 

• 7. ranked assignment method 

• 8. internet explorer favourites
importing 

• 9. karvel thornber

• 10. zili liu

• 11. softmax activation function 

• 12. bose multidimensional 
system theory 

• 13. gamma mlp

• 14. dvi2pdf 

• 15. john oliensis

• 16. rieke spikes exploring neural 

• 17. video watermarking 

• 18. counterpropagation network 

• 19. fat shattering dimension 

• 20. abelson amorphous 
computing 
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• Generate random IP addresses
– Find, if possible, a web server at the given address

– Collect all pages from server

– Advantages : Clean statistics, independent of any crawling strategy

• HTTP requests to random IP addresses 
– Ignored: empty or authorization required or excluded

– [Lawr99] Estimated 2.8 million IP addresses running crawlable web servers (16 
million total) from observing 2500 servers.

– OCLC using IP sampling found 8.7 M hosts in 2001

• Netcraft [Netc02] accessed 37.2 million hosts in July 2002

• [Lawr99] exhaustively crawled 2500 servers and extrapolated
– Estimated size of the web to be 800 million

– Estimated use of metadata descriptors:

• Meta tags (keywords, description) in 34% of home pages, Dublin core 
metadata in 0.3%

• Issues
– Virtual hosting

– Server might not accept http://102.93.22.15, 

– No guarantee all pages are linked to root page

– Power law for # pages/host generates bias

Random IP addresses
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• View the Web as a directed graph from a given list of seeds.

• Build a random walk on this graph
– Includes various “jump” rules back to visited sites

– Converges to a stationary distribution

• Time to convergence not really known

– Sample from stationary distribution of walk

– Use the “strong query” method to check coverage by SE

– “Statistically clean” method at least in theory!

– Could work even for infinite web (assuming convergence) under certain 
metrics.

• Issues
– List of seeds is a problem.

– Practical approximation might not be valid

• Non-uniform distribution, subject to link spamming

– Still has all the problems associated with “strong queries”

Random walks
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Source: http://www.searchengineshowdown.com/stats/change.shtml

www measurements (2002)
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• No sampling solution is perfect. 

• Lots of new ideas ...

• ....but the problem is getting harder

• Quantitative studies are fascinating and a good 
research problem

www sampling: conclussions



131

• How big is the graph?
– How many links on a page (outdegree)?

– How many links to a page (indegree)?

• Can one browse from any web page to any other? 
How many clicks? 

• Can we pick a random page on the web?
– (Search engine measurement.) 

• Can we exploit the structure of the web graph for 
searching and mining?

• What does the web graph reveal about social 
processes which result in its creation and dynamics?

• How different is browsing from a “random walk”?

Questions about the web graph
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• Exploit structure for Web algorithms
– Crawl strategies

– Search 

– Mining communities

• Classification/organization

• Web anthropology
– Prediction, discovery of structures

– Sociological understanding

the web graph
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• Weakly connected components (WCC)

• Strongly connected components (SCC)

• Breadth-first search (BFS)

• Diameter

algorithms
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• Typical diameter algorithm:

– number of steps ˜ pages × links.

– For 500 million pages, 5 billion links, even at a very optimistic 

0.15µs/step, we need

˜4 billion seconds.

Hopeless.

• Will estimate diameter/distance metrics.

• On the other hand, can handle tasks linear in the links 

(5 billion) at ˜1 µs/step.
– E.g., breadth-first search

• First eliminate duplicate pages/mirrors.

• Linear-time implementations for WCC and SCC.

scale
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Tentative picture

WCC 186M pages

SCC
56M pages

Where did 
this come 

from? Disconnected debris 34M pages
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• Start at a page p
– get its neighbors;

– their neighbors, etc.

• Get profile of the number of pages reached by 
crawling out of p, as a function of distance d

• Can do this following links forwards as well as 
backwards

• Experiment
– Start at 1000+ random pages

– For each start page, build BFS (reachability vs. distance) 
profiles going forwards, and backwards

Breadth-first search (BFS)
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How many pages are reachable from a random page?

Breadth-first search (BFS)



138

Interpreting BFS expts

• Need another 100-56 = 44M pages reachable from 
SCC

– gives us 100M pages reachable from SCC

• Likewise, need another ˜44M pages reachable from 
SCC going backwards

• These together don’t account for all 186M pages in 
giant WCC.
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Distance measurements

• For random pages p1,p2:
Pr[p1 reachable from p2] ˜ ß

• Maximum directed distance between 2 SCC nodes: >28

• Maximum directed distance between 2 nodes, given 

there is a path: > 900

• Average directed distance between 2 SCC nodes: ˜16

• Average undirected distance: ˜7
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• Lotka’s Law of Scientific Productivity
– Number of authors making n contributions is proportional to 1/n2

• Bradford’s Law of Scattering
– Journals in a field are in groups of size k, kn, kn2 contributing equal numbers of 

(useful) articles.
(Roughly: For every good journal there are n mediocre journals with articles that 

are 1/n th as useful)

• Zipf’s Law (Sociological Models, [Zipf49])
– Freq(t) proportional to 1/rank(t)a

where a is close to 1 
– Also by Yule (Linguistic Vocabulary,[Yule44]) and by Pareto (Economic Theory, 

[Pa1897])

• Power laws on the Web
– Inverse polynomial distributions:

Pr[k] ˜ c/kα for a constant c. ⇔ log Pr[k] ˜ c - α log k
– Thus plotting log Pr[k] against log k should give a straight line (of negative 

slope).

Bibliometric Laws
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Slope = -2.1

Probability that 

a random page has

k other pages 

pointing to it is

˜k
-2.1

(Power law)

In-degree distribution
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Slope = -2.7

Probability that 

a random page points

to k other pages is

˜k
-2.7

Out-degree distribution
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Largest WCC = 186M, SCC = 56M

Connected component sizes:

Connected components
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Web anatomy

www.ibm.comwww.ibm.com……/~newbie//~newbie/ /…/…/leaf.htm/…/…/leaf.htm
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www IR

• world wide web
• google, page rank
• markov chains
• HITS link analysis
• behavior-based web search
• crawling, indexing the web
• duplicates, mirrors and spam
• www infrastructure
• www size
• cache, hardware, systems
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