compression

some slides courtesy James allan@umass

outline

Introduction

Fixed Length Codes

— Short-bytes

— bigrams / Digrams

— n-grams

Restricted Variable-Length Codes
— basic method

— Extension for larger symbol sets

Variable-Length Codes

— Huffman Codes / Canonical Huffman Codes

— Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)
Synchronization

Compressing inverted files

Compression in block-level retrieval

compression

Encoding transforms data from one representation to
another

Compression is an encoding that takes less space

— e.dg., to reduce load on memory, disk, 1/O, network

[oss/ess. decoder can reproduce message exactly

[ossy. can reproduce message approximately

Degree of compression:

— (Oiriginal - Encoded) / Encoded
— example: (125 Mb - 25 Mb) / 25 Mb = 400%

Model Model

Data L Encoded Data L Data

Y

Y

Encoder Decoder

L

compression

advantages of Compression

Save space in memory (e.g., compressed cache)
Save space when storing (e.g., disk, CD-ROM)
Save time when accessing (e.g., 1/O)

Save time when communicating (e.g., over network)

Disadvantages of Compression

Costs time and computation to compress and
uncompress

Complicates or prevents random access
May involve loss of information (e.g., JPEG)

Makes data corruption much more costly. Small errors
may make all of the data inaccessible

compresion

Text Compression vs Data Compression

Text compression predates most work on general data
compression.

Text compression is a kind of data compression optimized for
text (i.e., based on a language and a language model).

Text compression can be faster or simpler than general data
compression, because of assumptions made about the data.

Text compression assumes a language and language model
Data compression learns the model on the fly.

Text compression is effective when the assumptions are met;

Data compression is effective on almost any data with a
skewed distribution

outline

Introduction

Fixed Length Codes
— Short-bytes

— bigrams / Digrams
— n-grams

Restricted Variable-Length Codes
— basic method
— Extension for larger symbol sets

Variable-Length Codes

— Huffman Codes / Canonical Huffman Codes

— Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)
Synchronization

Compressing inverted files

Compression in block-level retrieval

\ fixed length compression

« Storage Unit: 5 bits
 |f alphabet £ 32 symbols, use 5 bits per symbol

 |f alphabet > 32 symbols and £ 60

use 1-30 for most frequent symbols (“base case”),
use 1-30 for less frequent symbols (“shift case”), and

use 0 and 31 to shift back and forth (e.qg.,
typewriter).

Works well when shifts do not occur often.
Optimization: Just one shift symbol.
Optimization: Temporary shift, and shift-lock
Optimization: Multiple “cases’.

fixed length compression
bigrams/digrams

Storage Unit: 8 bits (0-255)
Use 1-87 for blank, upper case, lower case, digits and 25

special characters

Use 88-255 for bigrams (master 4+ combining)

master (8): blank, A, E, I, O, N, T, U

combining(21): blank, plus everything but J, K, Q, X, Y
Z

total codes: 88 + 8 * 21 = 88 4+ 168 = 256
Pro: Simple, fast, requires little memory.

Con: based on a small symbol set

Con: Maximum compression is 50%.

— average is lower (33%7).

Variation: 128 ASCII characters and 128 bigrams.
Extension: Escape character for ASCII 128-255

fixed length compression

Nn-grams

Storage Unit: 8 bits

Similar to bigrams, but extended to cover
sequences of 2 or more characters.

The goal is that each encoded unit of length >
1 occur with very high (and roughly equal)
probability.

Popular today for:

— OCR data (scanning errors make bigram assumptions
less applicable)

— asian languages
two and three symbol words are common
longer n-grams can capture phrases and names

fixed length compression
summary

Three methods presented. all are

— simple

— very effective when their assumptions are correct

all are based on a small symbol set, to varying

degrees

— some only handle a small symbol set

— some handle a larger symbol set, but compress best
when a few symbols comprise most of the data

all are based on a strong assumption about the

language(English)

bigram and n-gram methods are also based on

strong assumptions about common sequences
of symbols

10

outline

Introduction

Fixed Length Codes
— Short-bytes

— bigrams / Digrams
— n-grams

Restricted Variable-Length Codes
— basic method
— Extension for larger symbol sets

Variable-Length Codes

— Huffman Codes / Canonical Huffman Codes

— Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)
Synchronization

Compressing inverted files

Compression in block-level retrieval

11

restricted variable length codes

* an extension of multicase encodings (“shift
key”) where different code lengths are used for
each case. Only a few code lengths are chosen,
to simplify encoding and decoding.

 Use first bit to indicate case.
8 most frequent characters fit in 4 bits (0Oxxx).

« 128 less frequent characters fit in 8 bits
(LXXXXXXX)

* In English, 7 most frequent characters are 65%
of occurrences

« EXpected code length is approximately 5.4 bits
per character, for a 32.8% compression ratio.

« average code length on WSJ89 is 5.8 bits per
character, for a 27.9% compression ratio

0

restricted varible length codes:
more symbols

e Use more than 2 cases.

e 1xxx for 23 = 8 most frequent symbols, and

e Oxxx1lxxx for next 29 = 64 symbols, and

¢ OxxxXOxxx1lxxx for next 29 = 512 symbols, and

e« average code length on WSJ89 is 6.2 bits per
symbol, for a 23.0% compression ratio.

* Pro: Variable number of symbols.
e Con: Only 72 symbols in 1 byte.

13

0

restricted variable length codes :

numeric data

o Ixxxxxxx for 27 = 128 most frequent
symbols

o OXXXXXXX1xxxxxxx for next 214 = 16,384
symbols

 average code length on WSJ89 is 8.0

bits per symbol, for a 0.0% compression
ratio (!1).

« Pro: Can be used for integer data
— Examples: word frequencies, inverted lists

14

0

restricted variable —length codes

word based encoding

Restricted Variable-Length Codes can be used
on words (as opposed to symbols)

build a dictionary, sorted by word frequency,
most frequent words first

Represent each word as an offset/index into
the dictionary

Pro: a vocabulary of 20,000-50,000 words with
a Zipf distribution requires 12-13 bits per word

— compared with a 10-11 bits for completely variable
length

Con: The decoding dictionary is large,
compared with other methods.

15

Restricted Variable-Length
Codes: Summary

Four methods presented. all are
— simple

— very effective when their assumptions are
correct

No assumptions about language or
language models

all require an unspecified mapping from
symbols to numbers (a dictionary)

all but the basic method can handle any
Size dictionary

16

outline

Introduction

Fixed Length Codes

— Short-bytes

— bigrams / Digrams

— n-grams

Restricted Variable-Length Codes
— basic method

— Extension for larger symbol sets

Variable-Length Codes
— Huffman Codes / Canonical Huffman Codes
— Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

Synchronization
Compressing inverted files
Compression in block-level retrieval

17

Huffman codes

Gather probabilities for symbols
— characters, words, or a mix
build a tree, as follows:

— Get 2 least frequent symbols/nodes, join with a
parent node.

— Label least probable branch O; label other branch 1.

— P(node) = Z, P(child,)

— Continue until the tree contains all nodes and
symbols.

The path to a leaf indicates its code.

Frequent symbols are near the root, giving
them short codes.

ess frequent symbols are deeper, giving them
longer codes.

18

Huffman codes

J.eoo0000 @

0]
' ©
’ 1

‘T 0 l
OO
[Managing Gigabytes, Figure 2.6] 0

Heo0odE

19

|
d
1.

Huffman codes

Huffman codes are “prefix free”: no code is a prefix of another.

Many codes are not assigned to any symbol, limiting the
amount of compression possible.

English text, with symbols for characters, is approximately 5
bits per character (37.5% compression)

English text, with symbols for characters and 800 frequent
words, yields 4.8-4.0 bits per character (40-50% compression).

Con: Need a bit-by-bit scan of stream for decoding.

Con: Looking up codes is somewhat inefficient. The decoder
must store the entire tree.

Traversing the tree involves chasing pointers; little locality.
Variation: adaptive models learn the distribution on the fly.
Variation: Can be used on words (as opposed to characters).

20

Huffman codes

Occurrence
Encoding Unit Probability
the 270 B e Encodo
of 170
(a)
and 137
to 099
a .088
in 074
that 052
is .043
it .040
on .033

033 040

Huffman codes

Occurrence
e Encoding Unit Probability Code Value Code Length
the 270 01 2
of 170 001 3
and 137 111 3
to 099 110 3
a 088 100 3
in 074 0001 4
that 052 1011 4
is 043 1010 4
it 040 00001 5
on 033 00000 5

Lempel-Ziv

an adaptive dictionary approach to variable
length coding.

Use the text already encountered to build the
dictionary.

If text follows Zipf's laws, a good dictionary is
built.

No need to store dictionary; encoder and
decoder each know how to build it on the fly.

Some variants: LZ77, Gzip, LZ78, LZW, Unix
compress

Variants differ on:

— how dictionary is built,

— how pointers are represented (encoded), and

— limitations on what pointers can refer to.

23

0

Lempel Ziv: encoding

« 0010111010010111011011

24

0

Lempel Ziv: encoding

« 0010111010010111011011

* break into known prefixes
e 0|01 |O11|1 |010|0101(|11|0110]11

25

0

Lempel Ziv: encoding

« 0010111010010111011011

* break into known prefixes
e 0|01 |O11|1 |010|0101(|11|0110]11

e encode references as pointers
e (O|1,1/1,110,1|3,0 |1,1 |3,1|5,0 |2,7?

26

0

Lempel Ziv: encoding

« 0010111010010111011011

« break into known prefixes
e 0|01 |O11|1 |010]/0101]11]|0110]11

* encode references as pointers
e O1,1f1,110,113,0 1,1 |3,1|5,0 |2,?

* encode the pointers with log(7)bits

e 0/1,1]01,1]00,1]011,0 [001,1 |011,1]101,0
10010,?

27

0

Lempel Ziv: encoding

0010111010010111011011

break into known prefixes
0|01 |O11|1 |010|0101]11|0110]11

encode references as pointers
oj,11,110,113,0 11,1 |3,1]|5,0 |2,?

encode the pointers with log(?)bits
of1,1]01,1|00,1|011,0 |OO1,1 |O11,1|101,0

final string
01101100101100011011110100010

|0010,?

28

0

Lempel Ziv: decoding

e 01101100101100011011110100010

29

0

Lempel Ziv: decoding

e 01101100101100011011110100010

« decode the pointers with log(?)bits

e 0|1,1/01,1 |00,1|011,0 |001,1
|011,1|101,0 |0010,?

30

0

Lempel Ziv: decoding

e 01101100101100011011110100010

« decode the pointers with log(?)bits

e 0|1,1/01,1 |00,1|011,0 |001,1
|011,1|101,0 |0010,?

* encode references as pointers
e 0/1,1|1,1 |0,1|3,0 |1,1 [3,1]|5,0 |2,?

31

0

Lempel Ziv: decoding

01101100101100011011110100010

decode the pointers with log(7)bits

0[1,1]01,1 |00,1|011,0 |001,1 |011,1|101,0
10010,?

encode references as pointers
o|,11,11]0,1|3,0 1,1 |3,1]|5,0 |2,?

decode references
0|01 |011|1 |010|0101|11|0110]11

32

0

Lempel Ziv: decoding

01101100101100011011110100010

decode the pointers with log(?)bits

0[1,1]01,1 [00,1|011,0 |001,1

encode references as pointers

1011,1]101,0

0l1,1]1,11]0,1]3,0 [1,1 |3,1]5,0 |2,?

decode references

0/01 |[011|1]010/0101|11]0110]|11

original string
0010111010010111011011

|0010,?

33

0

Lempel Ziv optimality

e LempelZiv compression rate
approaches (asymptotic) entropy

— When the strings are generated by an
ergodic source [CoverThomas9l].

— easier proof : for i.i.d sources
 that is not a good model for English

34

oLempeIZiv optimality —i.i.d source

o let x = ajan...an a sequence of length n gen-
erated by a iid source and Q(x) = the proba-
bility to see such a sequence

e say LempelZiv breaks into ¢ phrases x =
y1Yy2...yc and call ¢g = # of phrases of length [

then —logQ(x) > > ¢logg
!
(proof) ¥ Qw)<1lso II Qy) < ()

|lyi| =l lys| =l

e if p; is the source probab for «; then by law
of large numbers x will have roughly np; occur-
rences of a; and then

logQ(z) = —log Hp?pi ~n 3 p;l0gp; = nHsource
i

e note that > ¢;logc; is roughly the LempelZiv
!

encoding length so th einequality reads
nH >~ LZencoding which isto say H ~> LZrate. 35

outline

Introduction

Fixed Length Codes

— Short-bytes

— bigrams / Digrams

— n-grams

Restricted Variable-Length Codes

— basic method

— Extension for larger symbol sets

Variable-Length Codes

— Huffman Codes / Canonical Huffman Codes

— Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

Synchronization

Compressing inverted files
Compression in block-level retrieval

36

0

synchronization

|t is difficult to randomly access encoded text

 With bit-level encoding (e.g., Huffman codes), it is
difficult to know where one code ends and another

begins.

« With adaptive methods, the dictionary depends upon the
prior encoded text.

* Synchronization points can be inserted into an

encoded message, from which decoding can begin.

— For example, pad Huffman codes to the next byte, or
restart an adaptive dictionary.

— Compression effectiveness is reduced, proportional to the
number of synchronization points

37

0

self-syncronizing codes

In a self-synchronizing code, the decoder can start in the
middle of a message and eventually synchronize(figure
out the code).

It may not be possible to guarantee how /ong it will take
the decoder to synchronize.

Most variable-length codes are self-synchronizing to
some extent

Fixed-length codes are not self-synchronizing, but
boundaries are known (synchronization points).

adaptive codes are not self-synchronizing.

38

0 synchronization

{a) chillier,

but that wasn‘t to be expected just now.

{B) chillier,
chillier,
chillier,
chillier,

chillier,
chillier,
chillier,
chillier,
chillier,

bP that wasn’t to be expected just now.

bft that wasn‘t to be expected just now.
b,t that wasn‘t to be expected just now.
bmt that wasn‘t to be expected just now.
budse, ecnasn’t to be expected just now.
bueea aieonasn’t to be expected just now.
buh that wasn’t to be expected just now.
butan, eonasn‘t to be expected just now.

;{n) chillier,

bic that wasn‘t to be expected just now. l
but thaswhrs eree " maem hcL t otaedgsrkeh |

(a) Original text, (b) Huffman code with one bit flipped (nine
different single bits) and (c¢) arithmetic coding with one bit flipped
[Managing Gigabytes, Figure 2.41]

39

outline

Introduction

Fixed Length Codes

— Short-bytes

— bigrams / Digrams

— n-grams

Restricted Variable-Length Codes

— basic method

— Extension for larger symbol sets
Variable-Length Codes

— Huffman Codes / Canonical Huffman Codes
— Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)
Synchronization

Compressing inverted files

Compression in block-level retrieval

40

compression of inverted files

 Inverted lists are usually compressed

* |Inverted files with word locations are about the size of
the raw data

e Distribution of numbers is skewed

— Most numbers are small (e.g., word locations, term
frequency)

 Distribution can be made more skewed easily
— Delta encoding: 5, 8, 10, 17 —» 5, 3, 2, 7

« Simple compression techniques are often the best choice
— Simple algorithms nearly as effective as complex algorithms
— Simple algorithms much faster than complex algorithms

— Goal: Time saved by reduced |I/O > Time required to
uncompress

41

0

iInverted list indexes

* The longest lists, which take up the most space, have
the most frequent (probable) words.

e Compressing the longest lists would save the most
space.

« The longest lists should compress easily because
they contain the least information (why?)

« algorithms:
— Delta encoding
— Variable-length encoding
— Unary codes
— Gamma codes
— Delta codes

42

Inverted List Indexes:
Compression

Delta Encoding (" Storing Gaps')
Reduces range of numbers.

Produces a more skewed distribution.
ncreases probability of smaller numbers.

Stemming also increases the probability
of smaller numbers. (Why?)

43

Inverted List Indexes:
Compression

Variable-Length Codes (Restricted
Fixed-Length Codes)

review the numeric data generalization
of restricted variable length codes

advantages:
— Effective

— Global
— Nonparametric

44

Inverted List Compression:

0 Unary Code

e Represent a number n 2 0 as n 1-
bits and a terminating O.

e Great for small numbers.
 Terrible for large numbers

45

Inverted List Compression:
Gamma Code

a combination of unary and binary codes

The unary code stores the number of bits needed to

represent 7 in binary.

The binary code stores the information necessary to
reconstruct n.

unary code stores [log n]

binary code stores n - 2llog n]

Example: n = 9

— log 9 = 3, so unary code is 1110.

— 9-8=1, so binary code is 001.

— The complete encoded form is 1110001 (7 bits).
This method is superior to a binary encoding

46

Inverted List Compression:
Delta Code

Generalization of the Gamma code

Encode the length portion of a Gamma code in
a Gamma code.

Gamma codes are better for small numbers.
Delta codes are better for large numbers.

Example:
— For gamma codes, number of bits is 1 + 2 *log n
— For delta codes, number of bits is:

logn+ 1+ 2 *1log(l 4+ log n)

47

	outline
	compression
	compression
	compresion
	outline
	fixed length compression
	fixed length compression : bigrams/digrams
	fixed length compression : n-grams
	fixed length compression : summary
	outline
	restricted variable length codes
	restricted varible length codes: more symbols
	restricted variable length codes : numeric data
	restricted variable –length codes : word based encoding
	Restricted Variable-Length Codes: Summary
	outline
	Huffman codes
	Huffman codes
	Huffman codes
	Huffman codes
	Huffman codes
	Lempel-Ziv
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv optimality
	LempelZiv optimality –i.i.d source
	outline
	synchronization
	self-syncronizing codes
	synchronization
	outline
	compression of inverted files
	inverted list indexes
	Inverted List Indexes: Compression
	Inverted List Indexes: Compression
	Inverted List Compression:Unary Code
	Inverted List Compression:Gamma Code
	Inverted List Compression:Delta Code

