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Outline

 Power
 One-way ANOVA

 Work in teams for T3 – Experimental!
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Power  

 The “power” of a statistical test is its ability to 
detect differences in data that are 
inconsistent with the null hypothesis.
 p(rejecting H0|H1)
 Aka – the ability to find a significant result, if your 

hypotheses are actually true.
 What is it called when this fails (i.e., 

accepting H0 when H1 is true)?
 Why is this a bad situation?
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Effect size 
 The amount of measured difference between 

study conditions
 The greater the effect size, the easier it is to 

show there is a significant difference in your 
study (i.e., the greater the power)

 Effect size formula is different for each 
hypothesis test procedure

 Tabulated standard values for “small”, “medium”, 
and “large” effect sizes

 Only talk about effect size IF significance is 
established – but then DO present it in your 
results
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The typical situation

H0 Actually True H1 Actually True

Comparison
Population 

Research
Population 
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The unlucky situations

H0 Actually True H1 Actually True

Comparison
Population 

Research
Population 

Type I Error Type II Error



Relationship between alpha, 
beta, and power

Correct
p = power

Type I err
p = a

Type II err
p = b

Correct
p = 1-a

H1 True H1 False

“The Truth”

Decide to Reject H0
& accept H1

Do not Reject H0
& do not accept H1

What is the probability of each of 
these situations occurring?



Relationship between power 
and effect size 

Research
Population 

Comparison
Population 

Z=1.64

a (.05)

b (.2) Power!

Two group, between subjects,
normal populations, 
standard normal distributions
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Power Analysis

 Should determine number of subjects you need ahead of 
time by doing a ‘power analysis’

 Standard procedure (part of your study plan):
 Determine statistic you will use
 Fix alpha and beta (1-power) (and number of tails if appropriate)
 Estimate expected effect size from prior studies
 Then: Determine number of subjects you need

 Note: Power
 Increases with effect size
 Increases with sample size
 Decreases with decreasing alpha
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Power analyses are different 
depending on the statistical test 
you are using… 

t-test for independent means
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Effect Size


 )( 21 

d

Parameters for population of individuals. 
(so, use SD-pooled for t-test of indep means)

Cohen:
d~0.2 small
d~0.5 medium
d~0.8 large
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Power table
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More Useful and Concise
(for practical purposes use a power calculator)



G*Power
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But, I can’t study 786 subjects! 
 Increase effect size

 Increase difference in population means (change manipulation)
 Decrease population variance (better measures, control more extraneous vars)
 Redesign study to collect many trials of measures per subject

 Relax criteria for Type I error
 Increase a threshold
 Change from Two-tailed => one-tailed test
 Decreases credibility of your findings

 Decrease power
 Decreases likelihood of getting a significant result

 Use a different statistic
 If possible, maybe consult a statistician

 Practically
 usually, redesign experiment so that we have increased effect size or better 

measures for decreased variance
 OR, call it a “pilot study”
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Interpreting results:
Significance & effect size

 Significance
 Just indicates that it is likely there is a non-

zero difference between populations
 Says nothing about how big the difference 

is
 Effect Size

 Only meaningful if result is significant
 Indicates how big the difference is (usually 

normalized to number of std-deviations)
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Interpreting results:
Significance & effect size

 Significant & small effect => ?
 Real difference, but slight. 
 Probably not of practical importance.

 Significant & large effect => ?
 Real difference, likely meaningful.

 Significant & small sample => ?
 Significant & possibly important.

 Non-significant & small sample => ?
 Inconclusive

 Non-significant & large sample => ?
 Evidence there really is no difference



Power & effect size for 
correlation

 Effect size = |r|
 Power, see table 11-7, pg 465 Aron

 Usually, given
 Expected effect size
 Test criteria

 Desired significance level (usually 0.05)
 Desired power (usually 0.8)
 Directionality of test
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Table 11-8, Aron

21

Effect size

Medium
(r=0.3)

Two-tailed…… 85

Approximate number of participants needed for 80% power for a study using the 
correlation coefficient (r) for testing a hypothesis at the .05 significance level

Small
(r=0.1)

Large
(r=0.5)

783 28



Effect size & power for X2 test 
for independence

 Completely different formulas than for Pearson r or 
t-test.

 Dependent on df.
 For 2x2, effect size = “phi”
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x2

N



Effect Size & Power for X2
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Computing effect size

 Some authors do not include means & stddevs
(per group) in their article…

 R package ‘compute.es’ contains a variety of 
methods for computing effect size given other 
info (e.g., t score, N1, N2)

 Morale: Always include means & stddevs
 Better: Report effect sizes yourself!
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T3 planning
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Are my data normal?

 Eyeballing histogram is a crude 
measure

 Inspect Q-Q plot (quantile-quantile)
 Compare shapes of distributions by plotting 

quantiles against each other 

 Run statistical test

Python Guide + https://machinelearningmastery.com/a-
gentle-introduction-to-normality-tests-in-python/

27



Q-Q plot

28http://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html
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Types of Study Designs

 Qualitative
 Ethnography

 Quantitative
 Descriptive
 Correlational
 Demonstrative
 Experimental 

 Between-subjects
 Single factor, two-level
 Single factor, N-level (for N>2)

 Within-subjects
 Single factor, two-level

Factor = IV

Levels = 
different
values of the 
factor



1-factor, N-level, between-subjects (N>2)
Experimental Design

 Trivial generalization of two-level 
between-subjects design

 Randomize uniformly across the 
treatment levels
 Random number generator
 Blocked randomization still works
 Baseline analysis generalizes to N

 Everything else is the same as 2 level
30



31

Accompanying Statistics

 Experimental 
 Between-subjects

 Single factor, N-level (for N>2)
 One-way Analysis of Variance (ANOVA)

 Two factor, two-level (or more!)
 Factorial Analysis of Variance
 AKA N-way Analysis of Variance (for N IVs)
 AKA N-factor ANOVA

 Within-subjects (for N>2 treatments)
 Repeated-measures ANOVA (not discussed)

 AKA Within-subjects ANOVA
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Basic Logic of ANOVA
 Null hypothesis

 Means of all groups are equal.
 H0: 1 = 2 = 3 … = n

 Test: do the means differ more than 
expected given the null hypothesis?

 Terminology
 Group = Condition = Cell = treatment

Analyze this 
using variance!
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 The Analysis of Variance is used when you have 
more than two groups in an experiment
 The F-ratio is the statistic computed in an Analysis of 

Variance and is compared to critical values of F
 A significant overall F may require further planned or 

unplanned (post hoc) follow-up analyses
 The analysis of variance may be used with unequal 

sample size (weighted or unweighted means analysis)

ANOVA: Single factor, N-level 
(for N>2)



1-factor, 2 level? 

 Could use ANOVA, but t-test between 
independent means simpler and gives 
same answer 
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Pop. variance from variation 
within samples

 As with t test
 Don’t know true population variances
 Estimate from samples
 Assume populations have same variance

 Average estimates of each sample into 
a within-groups estimate of pop. 
variance

35

How far apart means are doesn’t matter. Focus only on variation 
inside each population. Thus, not affected by whether null 
hypothesis is true. 



Pop. variance from variation 
between means of samples

 The more variance there is within 
several identical populations, the more 
variance there will be among the means 
of samples when you take a random 
sample from each population
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 Means of pop. the 
same, but means of 
samples are not

 Samples means from 
populations that 
have small variance 
have less variance 
amont them
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Implication: Estimate variance in each 
pop from variation in means of samples 

 Spread (right) 
due to 
differences in 
population 
means
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ANOVA – F ratio (F for Sir Ronald Fisher)
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Total variation

(from IV + 
indiv. 

differences +  
experimental 

error)

Between-
groups 

variability

Within-
groups 

variability
(due to indiv. 
diff. or error)

F ratio is
ratio of between
groups to within

groups

When null 
hypothesis

is true, 
ratio should 
be about 1

If H1 true, 
> 1

(more than 
chance)
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One-Way ANOVA – Assuming 
Null Hypothesis is True…

Within-Group Estimate
Of Population Variance

2
1est

2
2est

2
3est

2
estwithin

Between-Group Estimate
Of Population Variance

M1

M2

M3

2
estbetween

2

2

estwithin

estbetweenF






Somewhat analogous to a 
signal-to-noise ratio



Degrees of freedom

 F(between-df,within-df)

 beween-df = num groups - 1
 within-df = sum df for each group

 Each group df = Ngroup-1
 So, within-df = total N – num groups
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Sample F Distributions
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Sample critical value for F(3,10)
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Interpreting F ratio

 Significant F ration:
 At least some of the differences among 

means probably not caused by chance but 
by variations in IV

 DOES NOT tell you where! Do planned or 
unplanned test between means:
 Planned (specific, pre-experimental 

hypotheses)
 Unplanned (post hoc comparisons) 44
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Planned contrasts
 Can use pairwise F tests or t tests
 Two types of error to consider: 

 Per-comparison error (alpha for each comparison)
 Familywise error (takes into account probability of error given 

repeated tests
ிௐ

௖

is the number of comparisons
(With =4, =.05, 3+ times chance to get at least one 
significant result)

 Correction example: 
 Bonferroni procedure (Dunn’s test)

(divide alpha by number of tests)
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Post hoc analysis

 Bonerroni often no longer practical (adjusted 
alpha too small, power for any comparison too 
low) 

 There are many post hoc tests (B&A 452)
 Most obvious: Fisher’s Least Significant Difference 

(LSD)
 Same as t-tests on every pair of treatments
 Has inflated Type I error due to multiple tests

 Many others: Sheffe,, Tukey, Dunnett etc.
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Post hoc analysis

 Bonerroni often no longer practical (adjusted 
alpha too small, power for any comparison too 
low) 

 There are many post hoc tests (B&A 452)
 Most obvious: Fisher’s Least Significant Difference 

(LSD)
 Same as t-tests on every pair of treatments
 Has inflated Type I error due to multiple tests

 Many others: Sheffe,, Tukey, Dunnett etc.
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Example post hoc test

 Scheffe 
 Figure F for comparison in usual way
 Divide F by the overall study’s (number of 

groups – 1)
 Compare this smaller F to the overall study’s F cutoff



One-way ANOVA in R
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Data

0

1

2

3

4

5

6

1 Day 2 Day 3 Day

Performance



One-way ANOVA in R
> one$TrainingDays <- factor(one$TrainingDays)

> res <- aov(one$Performance ~ one$TrainingDays)

> summary(res)

Df Sum Sq Mean Sq F value   Pr(>F)   

one$TrainingDays  2 24.812  12.406  9.4417 0.001188 **

Residuals        21 27.594   1.314                    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1 

51F(2,21)=9.44, p<.05



One-way ANOVA in R
#’d’ is dataframe

#’d$Performance’ is DV

#’d$TrainingDays’ is factor (IV)

> oneway.test(d$Performance ~ d$TrainingDays,

var.equal=TRUE)

One-way analysis of means

data:  d$Performance and d$TrainingDays 

F = 9.4417, num df = 2, denom df = 21, p-value = 
0.001188

52F(2,21)=9.442, p<.05



Visualizing results

 boxplot(DV ~ IV)
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* post charts* post charts



LSD aka
unadjusted t-tests
> pairwise.t.test(DV, IVfactor, 

p.adjust="none", pool.sd = T) 

Pairwise comparisons using t tests with pooled SD data: 

DV and IVfactor 

Compact Other Pickup 

Other 0.50197 - -

Pickup 0.32786 0.72507 –

Sports 5.9e-05 0.00019 0.00064 

P value adjustment method: none 
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Note: p.adjust can also be "holm", "hochberg", "hommel", 
"bonferroni", "BH", "BY”



Post-hoc tests in R
Tukey HSD (“Honest Sig Diffs”)

> res <- aov(one$Performance ~ one$TrainingDays)

> TukeyHSD(res)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = one$Performance ~ one$TrainingDays)

$`one$TrainingDays`

diff        lwr      upr     p adj

2-1 0.0625 -1.3821563 1.507156 0.9934676

3-1 2.1875  0.7428437 3.632156 0.0027729

3-2 2.1250  0.6803437 3.569656 0.0035777
55



Publication format

The overall ANOVA was significant, 
F(2,21)=9.44, p<.05, indicating significant 
differences among the three study treatments.


Tukey HSD post-hoc tests (at .05 significance) 
indicated significant differences between 3-day 
training and the other conditions, but not 
between 1-day and 2-day training. 
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Between df (numGroups – 1) Within df (TotalN-numGroups)



Another example

 “The means for the CRCR and NI groups 
were 8.0, 4.0, and 5.0, respectively. These 
were significantly different, F(2,12) = 4.07, 
p<.05. We also carried out two planned 
contrasts: The CR versus the NI condition, 
F(1,12)=4.22, p<.10;and the CrimR versus 
the CR condition, F(1,12)=7.50,p<.05. 
Although the first contrast approached 
significance, after a Bonferroni correction (for 
two planned contrasts), it does not even 
reach the .10 level.” 57
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