Empirical Research Methods in Information Science

IS 4800 / CS6350

Midterm Review

Basic definitions

- Science (Describe, explain, predict)
- Non-Science
- Pseudoscience
- Protoscience ("fringe science")
- Scientific explanation: empirical, testable, rational, general, parsimonious, tentative, rigorously evaluated

Research method

A strategy of inquiry, which moves from underlying philosophical assumptions to a research design

Methods (community standards): Ethnography, authority, rational, scientific Research methods: The scientific method

Steps?

- 1. Observe a phenomenon
- 2. Formulate testable explanations (hypotheses)
- 3. Further observe and experiment
- 4. Refine and retest explanations

"If it disagrees with experiment, it's wrong. In that simple statement is the key to science."

— Richard Feynman

"falsifiability criterion"

Watch Feynman: https://fs.blog/2009/12/mental-model-scientific-method/

Even with best practices, mistakes 5% of the time!

Sources of research information

Example?	Scholarly	Substantive	Popular	Sensational
Appearance	Sober and serious	Attractive, with photographs	Attractive with many photos	Newspaper format
Reference Citations	Always provided	Sometimes cited	Rarely provided	Obscure references
Author	Scholar in the field	Scholar, editorial staff, freelance	Wide range of authors	Wide range
Language	Geared to scholars	For educated, no specialty	Simple, for less educated	Elementary for gullible audience
Content	Original research	No original research	Sources mentioned, may be obscure	Pseudoscientific sources
Publisher	Many by professional organizations	Commercial or professional organization	Commercial to entertain	Commercial to arouse curiosity

Factors affecting the quality of research information

- Statistical Significance
 - Journals typically do not publish findings that do not meet the minimum .05 level of statistical significance
 - File drawer phenomenon: Findings that don't reach significance at .05 end up in the file drawer
 - If 100 articles about a phenomena are studied...
 - How to prevent?
 - "Effect Size" important when interpreting significance

Populations and Samples

- Population
 - Large group including all potential subjects
 - May be defined in many ways
 - All children in day care
 - Children in day care in a particular city
- Sample
 - Small subgroup of subjects chosen from the population

Sampling and Generalization

- - Goal is to apply results obtained from a sample to the population
 - Generalization is the ability to apply findings from a sample to the population
 - Aka "External Validity" of a study
 - *Random sample:* A sample in which every member of the population has an equal chance of being chosen
 Ideal that is not often met
 - Nonrandom sample: A sample from a specialized population (e.g., college students)

Internal vs. External Validity of a study..

- Internal:
 - ability to prove/disprove hypotheses
 - appropriate methods (well designed)
 - conducted properly
 - data analyzed correctly
 - correct inference
 - replicability: could someone else conduct your study and get the same result?
- External:
 - generalizability

Ethical principals in human subjects research (IRB)

- Respect for persons (autonomous, special protections (minors, diminished capacity,...)
- Beneficence (maximize benefits, minimize harm)
- Justice (fair, risks/benefits distributed across society)
- Privacy (control over sharing of info)
- Confidentiality (treatment of info disclosed with trust)

Other IRB issues

- Sensitive topics (sexual attitudes, drugs, ...)
- Obtaining consent
- Fraud in research

Deception

- Active
- Passive (Conditioning, provoking negative behavior, ...)
- Why is it a problem?
- Solutions (role playing, prior consent, debriefing)

د الملك ال

Eligibility

- State precise study population
- Eligibility (inclusion) criteria
 - Required to used in study (on recruitment)
- Exclusion criteria
 - Tests administered after informed consent
- Estimate eligibility given some information about the population

Types of studies

(ID, properties, advantages/disadvantages, when to use)

- Quantitative
 - Descriptive
 - Correlational
 - Experimental
 - Demonstration
- Qualitative
 - Ethnography (+ sociometry, content analyses, meta-analyses)
- Mixed

Research model variables

- IVs (treatments/conditions/arms)
 - How to isolate changes:
 - Hold external variables constant
 - Randomize properly
- DVs
- What arrows mean
 - Correlation vs. causality!
- Mediators
- Moderators

Diagramming

Measure relationships

Measure relationships

Types of study designs

Number of Number of Manipulation Variables IV Levels

Descriptive	1	NA	NA
Demonstration	≥ 2	1	\checkmark
Correlational	≥2	NA	NA
Experimental	≥2	≥2	\checkmark

Validity

Internal validity

- Considered in design phase
- Threats: confounding and extra variables

History	Events may occur between multiple observations.		
Maturation	Participants may become older or fatigued.		
Testing	Taking a pretest can affect results of a later test.		
Instrumentation	Changes in instrument calibration or observers may change results.		
Statistical	Subjects may be selected based on extreme		
regression	scores.		
Biased subject	Subjects may be chosen in a biased fashion.		
selection			
Experimental	Differential loss of subjects from groups in a		
mortality	study may occur.		

External validity

He Hard

Validity

- Generalization
- Threats: too much control

Reactive testing	A pretest may affect reactions to an experimental variable.		
Interactions between selection biases and the independent variable	Results may apply only to subjects representing a unique group.		
Reactive effects of experimental arrangements	Artificial experimental manipulations or the subject's knowledge that he or she is a research subject may affect results.		
Multiple treatment interference	Exposure to early treatments may affect responses to later treatments.		

Measures

 Reliability – similar results under same conditions

A Junior a Junior

- Physical measures (precision)
- Behavioral measures (inter-rater)
- Questionnaire measures
 - Reliability: Test-retest, parallel forms, split-half
 - Internal consistency: Chronbach's alpha
- Validity measures what you intend

Measure validity

- Physical: accuracy
- Questionnaire

Whether the test "looks valid" to people using/taking it (important sometimes) E.g., test of math ability contains math problems

 Face validity: Subject adequacy of content. method

Establishing vali

Use of recognized domain experts; assess agreement among subject matter expert raters or judges regarding how essential a particular item is

- Content validity: How a test sample beha measure?
 - Does each item relate t
 - Do the items collective

W 2doguatoly doog

Example: Political attitudes: include items relevant to all the major issues related to such attitudes (e.g., abortion, health care, the economy, and defense)

Example: Final exam covers all material in the course

Construct

A variable, not directly observable, that has been developed to explain behavior on the basis of some *theory*

الويلغان والمستطعر الجندا أو

Examples: "intelligence," "self-esteem," "achievement motivation"

Establishing validity

 Construct validity: Do the results of a test correlate with what is theoretically known about the construct being evaluated? Does it measure what it claims?

- Convergent validity (subtype): measures of constructs that *should* be related to each other are
- Discriminant validity (subtype): measures of constructs that *should not* be related are not

E.g., Check if survey results correlate with another measure of the same dimension taken at the same time

Criterion-related validity Sw adequately does a test core match some criterion score? Takes two forms

ng validi

Unlike construct validity, not

necessarily related to theory

- Concurrent validity: Does test score correlate highly with score from a measure with known validity taken at the same time?
- Predictive validity: Does test predict behavior at a later time known to be associated with the behavior being measured?
 E.g., Survey predicts election results

Types of data

- Nominal
- Ordinal
- Interval
- Ratio

d . His.

Types of data

Provides:	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		~	~	~
"Counts," aka "Frequency of Distribution"	~	~	~	~
Mode	~	~	~	~
Median		v	~	~
Mean			~	~
Can quantify the difference between each value			~	~
Can add or subtract values			~	~
Can multiple and divide values				~
Has "true zero"				~

Measures of center: Decision rule

- Nominal
 - Mode
- Ordinal
 - Median
- Interval, Ration & Normal & No Outliers
 - Mean
- Else
 - Median

Measures of spread: Decision rule

- Nominal, Ordinal
 - No measure of spread
- Interval, Ratio & Normal & no outliers
 - SD
- Else:
 - IQR

Properties of measures

- Ecological validity (extent to which corresponds to real-world)
- Sensitivity
- Range effects (ceiling, floor)

Types of measures

- Behavioral
- Physiological
- Self-report
- Physical
- System
- Implicit

Measurement bias

- Reactivity
 - Demand characteristics (performance cues)
 - Role attitude (cooperative, defensive/suspicious, negative)
- Experimenter effects (addressed via blinding)
 - Expectancy bias
 - Treating groups differently
- Manipulation check

Types of studies

- Univariate (single DV)
- Multivariate (experimental, multiple DV)
- Multivariate (correlational, multiple var)

For later: n-factor, n-level from sample midterm: We haven't covered that yet

Experimental considerations

- Control groups
 - Standard of care
 - Non-intervention
 - A vs. B
 - Attention control
 - Placebo control
 - Wait-list contro

Intention to treat

Types of statistics

- Pearson correlation
- Chi-square goodness-of-fit
- Chi-square test for independence
- t-test for independent means

Know your data

- Normal
- Skew
- Uni/bimodal
- Outlier

Grade category

Descriptive stats

- Every measure
 - 1 stat describing measure of center
 - 0 or 1 stat describing spread
- Be able to compute
 - Mean
 - Median
 - Mode $s^2 = \frac{\sum (x)}{n}$
 - Range
 - StdDev
 - Interquartile-range
 - Histoaram

Sample Variance
² =
$$\frac{\sum (x - \bar{x})^2}{n - 1}$$

Sample Standard Deviation
 $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$

Interquartile Range

- Compute:
 - Order the data from least to greatest.
 - Find the median.
 - Calculate the median of both the lower and upper half of the data.
 - The IQR is the difference between the upper and lower medians.
- Less sensitive than the range to extreme scores
- Used when you want a simple, rough estimate of spread

Designing a questionnaire

- Items
- Construct / scale
- Factors
- Negated items (helps with response bias)

Rule of thumb:

- Use existing measure if exists
- Otherwise, run a pilot study

Types of items

- Rating scale. Consider:
 - Number points
 - Anchors
- Semantic differential scale bipolar space (e.g., sad 1 2 3 4 5 happy)
- Likert-item (degree of (dis)agreement)
- Visual analog scale

Questionnaire vs. composite measure

- Why composite measure?
 - Complex ideas not captured in single Q
 - Single item not enough variation across people
 - Several items more stable
 - Can impute missing values

Overall process to develop a composite measure

- Identify factors
- Identify items
- Face and content validity for each item
- Check response variance for each item (Check floor/ceiling effects)
- Bi-variate analysis
- Test reliability
- Test validity

Chronbach's alpha

- Measure of internal consistency
 - Not homogeneity
 - Not unidimensionality (assumes all items measure single dimension ... test using factor analysis)
- Function of the number of test items and the average inter-correlation among the items
- Average of all possible split halves

- N = number of items
- c-bar is the average intection of covariance among the items
- v-bar equals the average variance ("Standardized alpha" based on correlations instead of covariance)

- Increase # items, increase alpha
- If average interitem correlation is low, alpha will be low. As the average inter-item covariance increases, Cronbach's alpha increases as well (holding the number of items constant).

Cronbach's alpha

negate reverse-coded items first...

- Scores
 - .00 (no consistency) to 1.0 (perfect)
 - .70 (70% of variance reliable variance) Commonly cited as acceptable (Something important, might want .90+)
- See Python guide to compute...

Reminder

Pearson Correlation Coefficient

- Assumptions
 - 1. Two interval (or ratio) measures.
 - 2. Not an obviously curvilinear relationship.
 - 3. Both populations normally distributed*.

*Unimodal and symmetric frequency distributions. Most important if doing a significance test.

$$r = \frac{\sum [(X - M_X)(Y - M_Y)]}{\sqrt{(SS_X)(SS_Y)}}$$

 $SS_X = \sum (X - M_X)^2$ $SS_Y = \sum (Y - M_Y)^2$

Procedure for Hypothesis Testing with Correlations

Populations being compared:

- *Test:* The population from which the observed sample was drawn.
- Comparison: A hypothetical population in which the variables are unrelated, i.e., have a correlation of zero.

Procedure for Hypothesis Testing with Correlations

- Form of hypothesis H1?
 - The correlation in the observed population is different from a population in which the correlation is zero.
 - Unlikely we would have obtained a correlation this big if the variables actually were unrelated.
- Form of null hypothesis H0?
 - The correlation in the observed population is the same as a population in which the correlation is zero.

• Exact form given in Aron, or in R.

p-value and correlation

If a correlation coefficient has been determined to be statistically significant this does *not* mean there is a strong association. It simply tests the null hypothesis that there is no relationship. By rejecting the null hypothesis, you accept the alternative hypothesis that states that there is a relationship, but with no information about the strength of the relationship or its importance! Procedure for Hypothesis Testing with Correlations

R: (looking for Python turnkey equivalent)

- cor.test(v1,v2)
- See if significance < threshold
 - Yes => reject H0
 - No => inconclusive
- Manually:
 - Compute r
 - Is
 - If yes => reject H0
 - If no => inconclusive

Reporting results

r=*val, p<sigthresh*

Where,

- sigthresh = pre-defined significance threshold
 - Note: if p<<sigthresh, can report that as well, e.g., "p<.01", "p=.001"</p>

For example: **r=0.82**, **p<.05**

If not significant, than use "n.s." instead of "p<...".

Other measures of association

- Point-biserial
 - One numeric & one binary (nominal) measure
 - Just dummy code the nominal (0 and 1) and use Pearson correlation.
- Spearman Rank Order (rho)
 - Two ordinal measures (or for transformed numeric measures if non-linear)
 - Replace each value with its rank order
 - Compute Pearson correlation with ranks
 - Measures degree of monotonicity

Sampling

Convenience

. Lan

- Simple
- Systematic
- Stratified
- Proportionate
- Cluster

Type I error

- Rejection of a true null hypothesis (also known as a "false positive" finding)
- Often represented by the Greek letter alpha (a)

Type II error

 Failure to reject a false null hypothesis (also known as a "false negative" finding)

Often represented by the Greek letter beta (β)

Level of significance

Probability of rejecting a null hypothesis by the test when it is really true, which is denoted as a. That is, P (Type I error) = a.

The level of significance 0.05 is related to the 95% confidence level

Power

Probability that a test will reject the null hypothesis when it is, in fact, false.

ال مراجع المراجع الم

- 1 β (type II error rate)
- High power is desirable. Like β, power can be difficult to estimate accurately, but increasing the sample size always increases power

Power Analysis

- Should determine number of subjects you need ahead of time by doing a 'power analysis'
- Standard procedure (part of your study plan):
 - Determine statistic you will use
 - Fix alpha and beta (1-power) (and number of tails if appropriate)
 - Estimate expected effect size from prior studies
 - Then: Determine number of subjects you need
- Note: Power
 - Increases with effect size
 - Increases with sample size
 - Decreases with decreasing alpha

But, I can't study 786 subjects!

- Increase effect size
 - Increase difference in population means (change manipulation)
 - Decrease population variance (better measures, control more extraneous vars)
 - Redesign study to collect many trials of measures per subject
- Relax criteria for Type I error
 - Increase α threshold
 - Change from Two-tailed => one-tailed test
 - Decreases credibility of your findings
- Decrease power
 - Decreases likelihood of getting a significant result
- Use a different statistic
 - If possible, maybe consult a statistician
- Practically
 - Usually, redesign experiment so that we have increased effect size or better measures for decreased variance
 - OR, call it a "pilot study"

Type I and Type II errors

Table 1. Types of Statistical Errors

	H ₀ is actually:	
2	True	False
Reject <i>H</i> 0	Type I error	Correct
Accept H ₀	Correct	Type II error

Effect size

 Measures strength of the relationship between two variables on a numeric scale

1 marine have a plan and a

 Effect size is usually measured in one of three ways: (1) standardized mean difference, (2) odd ratio, (3) correlation coefficient

Effect Size =

[Mean of experimental group] – [Mean of control group]

Standard Deviation

Effect size: correlation

Estimate the amount of the variance within an experiment that is "explained" or "accounted for" by the experiment's model

Can use Pearson's correlation

Pearson's correlation

- r for effect size
- -1 to 1
- Guidelines:
 - Small 0.1
 - Medium 0.3
 - Large: 0.5

Basic Process of Hypothesis Testing

- H1: Research Hypothesis:
 - Population 1 is different than Population 2
- H0: Null Hypothesis:
 - No difference between Pop 1 and Pop 2
 - The difference is "null"
- Compute p(observed difference/H0)
 - `p' = probability observed difference is due to random variation
- If p<*threshold* then reject H0 => accept H1
 - p typically set to 0.05 for most work
 - p is called the "level of significance"

$$X^2 = \sum \frac{(O-E)^2}{E}$$

- O = Observed frequency for a given category
- E = Expected frequency for a given category
- Note: "statistic" is a function you apply to a set of data (in a statistical analysis)

Computing Chi-square Goodness of Fit

- Manually:
 - Determine df (= num categories 1)
 - Compute Chi-square using formula
 - Lookup to see if statistic>table entry for significance,df
 - If yes => reject H0
 - If no => inconclusive

Chi-square probability distribution

Reporting result

 $X^{2}(df) = chisq, p < sigthresh$

Where,

- df = degrees of freedom
- sigthresh = pre-defined significance threshold
 - Note: if p<<sigthresh, can report that as well, e.g., "p<.01", "p=.001"

For example: $X^2(2) = 11.89, p < 0.05$

If not significant, than use "n.s." instead of "p<...". Usually also report expected and actual frequencies, or at a minimum, the total number of cases considered (aka "n"). Chi-Square Test for Independence

Are two variables related (H1), or are they independent (H0)?

- Assumptons
 - Both variables must be nominal.
 - Cannot be related in a 'special' way (i.e., repeated measures)
 - Random sampling assumed

- Kinds of analyses for descriptive studies?
 - Descriptive
 - Chi-square goodness of fit [nominal]

Review

Kinds of analyses for correlational studies?

- Descriptive
- Chi-square goodness of fit [nominal]
- Chi-square test for independence [nominal/nominal]
- Correlation [numeric/numeric]
 - Point-biserial [numeric/nominal]
 - Spearman rho [ordinal/ordinal], [ordinal,numeric], or [numeric,numeric and not linear or not normal]

Review

Kinds of analyses for experimental studies?

- Descriptive
- Chi-square goodness of fit [nominal]
- Correlation (large number of IV values parametric) [numeric/numeric] (atypical)
- Chi-square test for independence [nominal/nominal]
- t-test [nominal/numeric]

The grand plan

- X^2 tests
 - For nominal measures
 - Can apply to a single measure
- Correlation tests
 - For two numeric measures
- t-test for independent means
 - For categorical IV, numeric DV

Midtern Prep

Every test has a long question of the following form:

Study Proposal (25%). Sketch a study proposal to prove which search engine is best (Google or Bing) for individuals who have never used a computer before. Your primary outcome measure is learnability (from Nielsen).

What a sketch might have

- Hypotheses
 - Null hypothesis
 - Research hypotheses
- Study design
 - 2 group, between subjects
 - Diagram
- Measures
 - Type
 - Reliable? Valid? (How do you know)? ⁸⁸

What a sketch might have

- Participants
 - Sampling/recruitment
 - Eligibility
 - Inclusion/exclusion
 - Power analysis
 - Ethics
- Protocol
 - Standardized tasks
 - Randomization

What a sketch might have

- Analysis plan
 - Descriptive statistics
 - Inferential statistics
 - Test type (Pearson r, Chi-Square, t-test, ...)
 - Test criteria (alpha, two-tailed, DoF, ...)
- Summary: what might be learned?