

Human-Computer Interaction CS5340 - Round 4

Homework I3: Update

- Now due next week
- Still advise you to find a spot on your own
 - Any senior center would qualify
- Cambridge Senior Center plan

Homework I3: Ethnography

- You have been hired to use computer interface technology to improve the lives of older adults.
- Use concepts from Ethnography reading to identify problems where HCI might make an impact
 - Find a location

 - Pick a location from Stephen's list, OR
 Propose a location to Stephen where older adults spend significant time
 - You may have to travel to a different part of the city!
 - Schedule a time

 - Scriedure a Unite

 No more than two students at a location at one time!

 You must observe for a 2.5 hour chunk of time

 This is NOT an assignment you do in pairs. Do NOT go with a friend

 Be sure to "check in" with some

Homework I3: Ethnography

- Assess the situation. Find your optimal location.
 - A place where there are multiple older adults (eating area, class, workspace, etc.)
 - A place where you will not be in the way
- Observe. Identify problems HCI might solve.
- Interview. Try to interview at least one person (and optimally 2-3), but
 - You must ask them if OK (say you're doing a class project)
 - You need to be VERY cognizant of the impression you make
 - Do not ask them to volunteer medical information
 - Read body language carefully
 - Do not hold someone hostage
 - Thank them for their generousity

Prior homework updates

- Zeeshan sending week1 grades
- Comment on notes
 - From now on...
 - Cutting and pasting -> hand written

Team Project Guidelines

- Your project MUST
 - Have a substantial UI
 - Be interactive
 - Work robustly
 - Contribute to health or health research
 - Solve a real-world problem
 - Be targeted for and tested with older adults

Why?

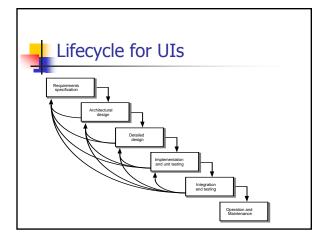
Team Project Guidelines

- Your project SHOULD
 - Be creative
 - Be original
 - Be non-obvious
 - Have a "wow" factor
 - Allow you, at the end of this course, to leapfrog your peers with an amazing demo!

Why?

Team Project Constraints

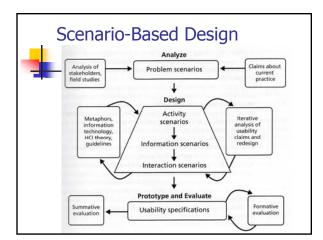
- Team: 3-4 members, ideally multidisciplinary
- Focus: Health Application for (or used by) older adult users
- Context: Senior center, home, etc.
- Platform: Your choosing
- Input/output/sensing: Your choosing



Team status?

Requirements Analysis

- What does the system/interface need to do?
- Who is the user?
- What does the user need to do?


Not just the interface

- Organizational issues (CSCW)
 - Who is impacted "outside" of the system?
 - Workflow
- Example: Meeting room notification system

Not just the interface

- Organizational issues (CSCW)
 - Power structures
- Example: Virtual work
 - Presence (increases perceived worth)
 - Informal interaction
 - Exercise authority
 - Existing social and org structures (asymmetry)
 - Management by objectives

Stakeholders

- Not just users, but anyone affected
- People often have conflicting goals
- Symmetry (benefits ≠those who work)
- Free rider problem
 - Visibility
 - Social pressure
- Critical mass
 - Web 2.0 challenge

Classes of Stakeholders

- Primary
 - End users
- Secondary
 - Receive output or provide input
- Tertiary
 - Directly affected by success or failure
- Facilitating
 - Involved with design, development, maintenance

Example: EMR

Classes of Stakeholders

- Primary
- End users
- Secondary
 - Receive output or provide input
- Tertiary
 - Directly affected by success or failure
- Facilitating
 - Involved with design, development, maintenance

Example: Course Reg

T2-1 User Analysis

- Practically speaking (for the homework)
 - Age, gender, ethnicityEducation

 - Physical abilities
 - General computer experience
 - Skills (typing? Reading?)
 - Domain experience
 - Application experience
 - Work environment and other social context
 - Relationships and communication patterns
- Identify major kinds/classes of users
- By interview, observation & questionnaire

Socio-technical modeling

- Work systems are composed of both people and technology
- Documents the impact of a specific technology into an organization
- Done via interviews, focus groups, observation

Key elements to capture

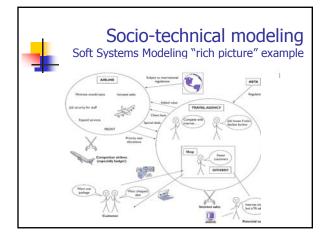
- Problem (hopefully a real one)
- Stakeholders
- Workgroups (informal, formal)
- Changes supported
- Technology within organization
- External constraints and performance measures

Socio-technical Modeling

- CUSTOM
 - Focus on stakeholders
- OSTA
 - Focus on tasks
- Soft systems methodology
 - Independent of technology

CUSTOM

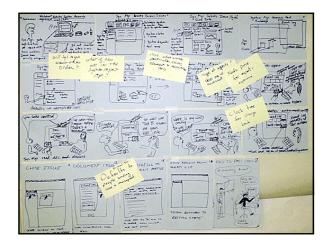
- Stages
 - Describe organizational context
 - 2. ID & describe stakeholders (current & proposed)
 - 3. ID & describe workgroups (current & proposed)
 - 4. ID & describe task-object pairs (current & proposed)
 - 5. ID stakeholder needs (proposed current)
- 6. Consolidate stakeholder requirements
- Focus on stakeholder perspectives
- cf. OSTA focus on tasks

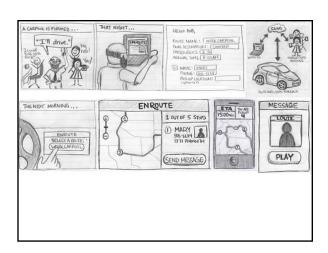

Open System Task Analysis (OSTA)

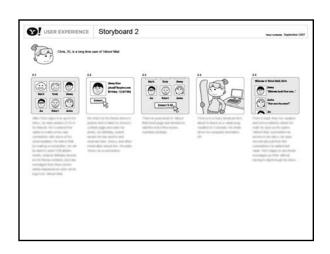
- Focus on aspects of system framed in terms of tasks
 - User's goals
 - Task inputs
 - External environment
 - Transformation processes
 - Social system
 - Technical system
 - Performance satisfaction
 - New technical system

SSM – Soft Systems Modeling

- Understanding situation & problem
 - Independent of technology
- Helps designer understand broader context


What's the answer?


- There is no right/wrong answer
- SSM useful if it aids designer's understanding of the problem and design of the solution
- True of many of the techniques in HCI!



Participatory Design

- Include users throughout design process
 - Brainstorming
 - Storyboarding
 - Pencil and Paper Exercises (paper prototyping)

PICTIV

- Paper prototyping +
- Video
- Example: http://www.youtube.com/watch?v=CHj6qcD6tIQ

Participatory Design

- e.g. ETHICS
 - Process of development = managing change
 - Design groups include representative stakeholders – make all design decision.
 - Explicit list of questions to answer

Participatory Design

- ETHICS
 - Make the case for change
 - Identify system boundaries
 - Describe the existing system
 - Define key objectives
 - Define key tasks
 - Define key information needs
 - Diagnose efficiency needs
 - Diagnose job satisfaction needs
 - Analyze likely future changes
 - Specify and prioritize objectives based on efficiency
- Concerns: expense and time

Contextual Inquiry

- cf ethnography
- More focused (assumes technology)
- More brief (usually one or a few interviews)
- Focuses on interview (vs. observation)
- Uses specific techniques & models
 - Sequence
 - Physical
 - etc.
- But, done in the workplace (in context)

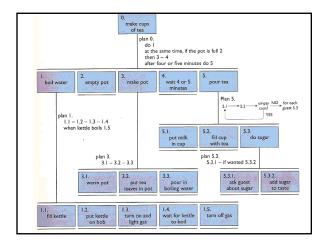
Why is contextual inquiry important?

- You better know the constraints on behavior!
- Example: communication and plausible deniability

Task Analysis

- Analysis of how people do their jobs
- Task decomposition
- Knowledge-based techniques
 - Objects, tasks, and knowledge
- Entity-relation-based analysis
 - Actors and objects and relationships

1	


Task Analysis

- Clarify what you know
- Organize what you know
- Understand transitions/danger points
- Fill in gaps

Hierarchical Task Analysis

- Hierarchy of tasks & subtasks
- Plans
 - Express partial ordering on subtasks (possible parallelism)
 - Options on subtasks
 - Conditions on subtasks
 - Temporal constraints on subtasks (wait)
 - Cycles

Knowledge-Based Analysis

- Goal: understand knowledge needed to perform a task
- Taxonomies
 - Ask the expert
 - Card sorting
 - Use for objects & tasks
 - Usually many different ways to do
 - Addressed by task descriptive hierarchy (AND/OR/XOR)

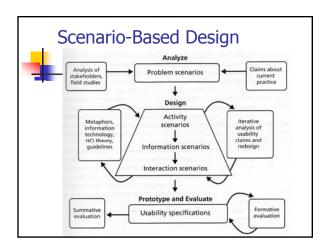
Entity-Relationship Analysis

- Objects
 - Concrete, Actors (roles), Composites
 - Attributes
- Actions
 - Agent, Patient (changes state), Instrument
- Events
 - Performing of an action, spontaneous
- Relationships
 - Object-object, Action-patient, Action-instrument
- Describe sequencing

T2-2 Task Analysis

- Practically speaking (for the homework)
 - Hierarchical task decomposition
 - Task = Goal (what, not how)
 - Top-level = problem you're solving
 - Decompose into subtasks/subgoals
 - For each task
 - Goal "Why do you do this?"
 - Preconditions (other tasks, information)
 - Decompose if nontrivial "How do you do it?"

T2-2 Task Analysis


- Other information about tasks that may be useful
 - Where is the task performed?
 - How often is the task performed?
 - What are its time or resource constraints?
 - How is the task learned?
 - What can go wrong? (errors, exceptions)
 - Who else is involved in the task?

Exercise

Do a task analysis for "brushing teeth"

Example Problem Scenario

Sally Harris is a high school sophmore who has been researching black holes for the past 3 months...

She is a bit worried about the space and materials provided to everyone... This year she has explored some new methods-for example, an Authorware simulation that illustrates her theory of black hole formation. ...

As she studies her simulation, Sally thinks of a way to turn the lack of computer support into a "feature": She will create a sequence of visualizations that can be flipped like a deck of cards to show the animation. ...

Problem Scenarios

- Narratives of activities in the current situation (prior to technology introduction) that reflect needs and opportunities for redesign.
- Tells a story of a current practice.
- Carefully constructed to reveal aspects of the stakeholders & activities that have implications for design. (fictional!)

Essential Elements of a Scenario

- Setting situational details that motivate goals, actions, reactions
- Actors
- Task goals-
- Plans Converting goal to behavior
- Evaluation Interpreting situation
- Actions observable behavior
- Events -

Essential Elements of a Scenario – Registrar system

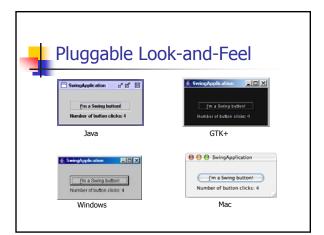
- Setting situational details that motivate goals, actions, reactions
- Actors
- Task goals-
- Plans Converting goal to behavior
- Evaluation Interpreting situation
- Actions observable behavior
- Events -

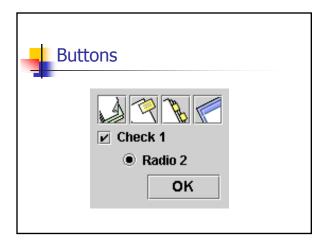
T2-3 Problem Scenarios

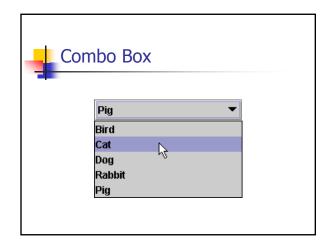
- Invent hypothetical stakeholders
- Write about 3 tasks
- Be as concrete as possible to show actors' motives

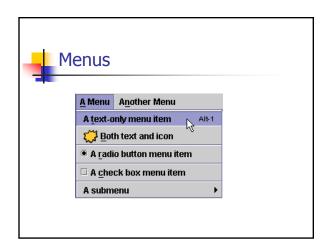
T2 - Team Project

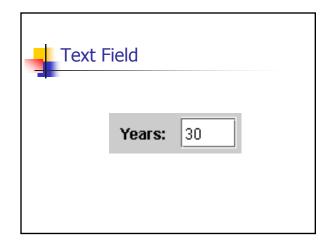
- Perform User Analysis & Task Analysis
- Write up
 - Description of users / user classes
 - Task Analysis
 - Six or more tasks, including goal, preconditions, subtasks, and exceptions
 - Problem Scenarios
 - For 3 most important tasks

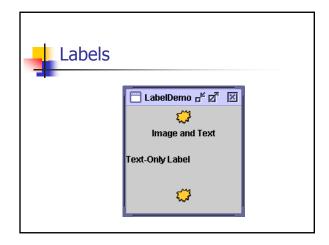


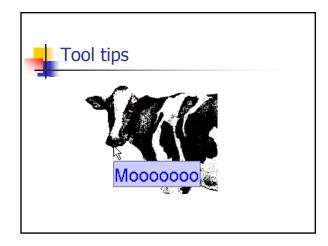

Basic GUI

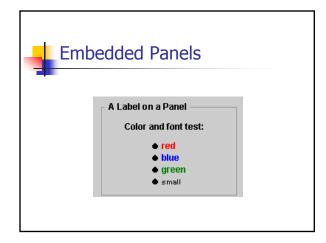


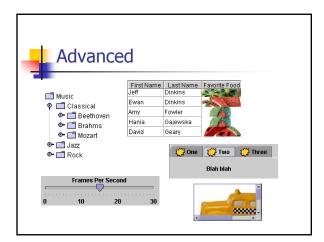

AWT vs. Swing


- AWT used "heavy weight" components
 - Uses native widget & processes
- Swing uses "light weight" components
 - **1997, 1.1.5**
 - Uses native window for top-level frame, but Swing provides its own windowing system within the frame
 - Even draws its own menus
 - Thus,
 - Can have "pluggable look-and-feel"
 - Can be deployed on any device (with req'd libs)
 - Many more (non-native) widgets









Team Homework – Create a Restaurant Ordering App

- Two Labels, one with an icon.
- Two Buttons, one with an icon.
- One ButtonGroup with at least 3 RadioButton options (with toggling between buttons functional).
- Two CheckBoxes.
- One ComboBox with at least two items.
- One TextField
- One Panel with a titled border enclosing at least one other component.
- One tool tip on one component.
- One Menu with at least two options.

Possible Implications of Aging for Interface Designers

Hawthorn

Methodological Issues

- Studies of age as independent variable
 - Cross-sectional vs.
 - Longitudinal
 - Flynn effect (Fig 2. Hawthorne)
- Decline is non-linear

Vision & Aging

- - Progressive impairment very common
 - Peripheral stimuli must be stronger
 - Slower processingWide variability
 - - 10% of 80 yr olds are legally blind
 10% of 80 yr olds have 20/20 vision
- HCI impacts
 - Need to assist in maintaining focus & attention
 - Text: avoid colors, use large standard fonts, left justified
 - Use simple, relevant graphics
 - Keep screen objects together that must be compared

Speech/Hearing & Aging

- - Hearing declines with age 20% 45-54 => 75% 75-79
 - Particular problems with high frequencies
 - Difficulty with background noise
 - Speak less fluently
- HCI impacts
 - Need to use lower frequency alert sounds
 - Use lower frequency human speech for output
 - TTS may be less understandable
 - ASR less reliable

Psychomotor ability & Aging

- Issues
 - Longer response times for some tasks
 - Less control of fine movement & force
- HCI Impacts
 - Problems with mouse
 - Require less speed, larger targets

Attention & Aging

- Issues
 - Problems maintaining attention over long periods of time.
 - Ability to attend to relevant info in the face of distractors declines.
 - Possible decline in ability to divide attention.
- HCI impacts
 - Minimize distractions

Memory & Learning

- Issues
 - Slight decline in working memory
 - Some decline in episodic & procedural, but not semantic, memory
 - Recognition intact, but recall suffers
 - Decline on spatial memory tasks
- HCI impacts
 - Reduce working memory demands
 - Recognition vs. recall
 - Avoid command line languages
 - Learning new software may take significantly longer and require more practice

Intelligence

- Issues
 - Some decline
 - Individuals decline differently (verbal, reasoning, spatial, numeric, etc)
 - Crystallized vs. Fluid Intelligence
- HCI impacts
 - Reduce complexity
 - Minimize change

Cursor exercise

Next Week

- Read and take notes

 - Design I (Dix Ch 5, Dix Ch 7)
 GUI architectures and tools (Dix Ch 8)
 Research papers for Interface Design Tools & Toolkits (Week 5) (4 papers)
- Continue learning widgets for team's programming language
- I3: Ethnography!
- I4: Design exercise
- T2: Task Analysis and Basic GUI

-

Research Papers: Health Interfaces; Older adults

- Choe et al., Opportunities for Computing Technologies to Support Healthy Sleep Behaviors, CHI 2011 (Presenter: Ghanshyam Bhatt)
- Purpura et al., Fit4Life: The Design of a Persuasive Technology Promoting Healthy Behavior and Ideal Weight, CHI 2011 (Presenter: Xueming Wu
- Keyani et al., DanceAlong: Supporting Positive Social Exchange and Exercise for the Elderly Through Dance, CHI 2005 (Presenter: Milesh Nima)
- Chu Yew Yee et al., Investigating Narrative in Mobile Games for Seniors, CHI 2010 (Discuss)