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Abstract. A low-cost kit of stick-on wireless sensors that transmit data indicating 
whenever various objects are being touched or used might aid ubiquitous 
computing research efforts on rapid prototyping, context-aware computing, 
and ultra-dense object sensing, among others. Ideally, the sensors would be 
small, easy-to-install, and affordable. The sensors would reliably recognize 
when specific objects are manipulated, despite vibrations produced by the 
usage of nearby objects and environmental noise. Finally, the sensors would 
operate continuously for several months, or longer. In this paper, we 
discuss the challenges and practical aspects associated with creating such 
"object usage" sensors. We describe the existing technologies used to 
recognize object usage and then present the design and evaluation of a new 
stick-on, wireless object usage sensor. The device uses (1) a simple 
classification rule tuned to differentiate real object usage from adjacent 
vibrations and noise in real-time based on data collected from a real home, 
and (2) two complimentary sensors to obtain good battery performance. 
Results of testing 168 of the sensors in an instrumented home for one month 
of normal usage are reported as well as results from a 4-hour session of a person 
busily cooking and cleaning in the home, where every object usage interaction 
was annotated and analyzed.   

1  Introduction 
Many ubiquitous computing researchers desire a low-cost kit of stick-on 
wireless sensors that transmit data indicating whenever various objects in the envi-
ronment are being touched or used. Availability of such a kit might aid ubiquitous 
computing and ambient intelligence research efforts on rapid prototyping, context-
aware computing, and ultra-dense object sensing, among others. For example, prior 
work has demonstrated that sensors such as magnetic reed switches [1-3] and RFID 
tags [4] unobtrusively attached to many objects in an environment can enable a com-
puter system to infer contextual information about the home occupant’s movement 
and everyday activities such as “cooking,” “making tea,” “vacuuming,” and others. 
Furthermore, the same types of sensors may be useful for studying behavior in non-
laboratory environments, providing designers and ethnographers with new data gath-
ering tools [5]. Sensors that can recognize object usage in everyday environments 
would also foster the development of embedded health assessment applications where 



the well-being of individuals living alone in their own homes might be assessed in 
real-time, providing peace of mind to relatives and loved ones.  

But first, in order to collect the necessary data for developing these applications, 
researchers require an object usage sensing technology that allows them to easily 
enter an existing home, unobtrusively attach sensors to as many objects as they wish 
(possibly hundreds), and to leave those sensors deployed for studies that might last 
months. For this to happen, the object usage sensing technology needs to be wireless, 
small, easy to install and remove, affordable, robust (electronically and physically) 
and not necessarily dependent upon a person wearing a tag or reader. People may be 
unwilling or unable to wear any technology in their homes (e.g. those suffering from 
medical conditions). These same sensor characteristics will also be desirable once the 
sensor technology migrates from use in research to use in commercial ubiquitous 
computing applications. 

At first glance, the problem of recognizing object usage from object motion might 
appear trivial. One might think that a wireless object usage sensor could be designed 
by simply attaching a low-power, low sampling rate (e.g. 0.5Hz) motion, vibration, 
tilt, or accelerometer sensor to a wireless node. The device would transmit an object 
ID wirelessly when significant movement is observed by simply thresholding the 
motion, vibration, tilt, or acceleration signal, where the threshold is determined in an 
object independent manner (since setting object-dependent thresholds in the field 
increases installation complexity). We thought this would be the case.  

However, when we deployed such a system in a real home, we observed some 
challenges that we did not initially fully appreciate. For example, the manipulation of 
an object can induce vibrations and movement in nearby objects that can cause false 
positive activations. This happens, for example, when someone forcefully closes a 
drawer or drops heavy objects on a surface supporting other objects that also have 
sensors. We refer to this problem as “the adjacency problem”. While we realized 
adjacency activations would occur, the extent to which the problem was experienced 
in a real home was surprising. These false positive activations not only reduce the 
battery life of the sensor nodes (due to unnecessary wireless broadcasts) but also may 
negatively affect the performance of ubiquitous computing applications that depend 
upon the sensor data.  

The second anticipated but underestimated challenge is that the magnitude and 
temporal characteristics of the motion, acceleration, vibration, or tilt/rotation gener-
ated by household objects is dramatically different among objects. Many of these 
motions are difficult to detect from vibration and tilt switches with low sensitivity and 
orientation dependencies (blind spots), and even from accelerometers sampling at less 
than 10Hz. For example, the motion patterns generated by an electric can-opener are 
different from those generated by closing a drawer on a smooth sliding mechanism, 
and even though a low sampling rate accelerometer will detect the can opener relia-
bly, we found that sampling rates of at least 20Hz are required to reliably detect the 
“instantaneous” start and stop of smooth drawers, which dampen the motion to a 
surprising degree. The typical amount of motion observed when a person sits on a 
couch is another example of a subtle motion signal that requires a sensitive threshold 
and high sampling rate.  Unfortunately, these relatively high sampling rates substan-
tially impact battery life.  



A third challenge we encountered is that many objects in the home, such as the 
telephone book and the first-aid kit, are seldom used (probably a couple of times a 
year). Therefore, to be useful, object usage sensors on these devices must have a very 
low false positive rate due to adjacent object usage or environmental noise (e.g. truck 
passing by). In our initial tests using simple acceleration thresholding to detect object 
usage, we found that random internal noise from the accelerometers, which were 
always sampling, would eventually (after days of use) trigger false positive activa-
tions when thresholds were set sufficiently low to capture real object usage.  

Dealing with each of these three challenges impacts the fourth challenge: balanc-
ing good battery performance with robust object usage detection.  

In this paper, we describe the practical issues we have encountered while trying to 
recognize object usage in real homes. We describe the advantages and disadvantages 
of existing sensing technologies used to recognize object usage, and present the de-
sign and evaluation of a specialized wireless sensor to detect object usage in existing 
homes. The sensor hardware and software was tuned based on our experience install-
ing hundreds of sensors in real homes. Our two key design insights were to (1) mini-
mize false positive activations due to adjacencies by implementing a classification 
rule tuned to differentiate real object usage from adjacent vibrations and noise in real-
time and (2) extend battery life without sacrificing performance by combining two 
types of sensors with different strengths: a low-power piezofilm sensor with high 
sensitivity to external motion/vibration used for waking up a more energy costly 
accelerometer sampling at 20Hz used to differentiate between real and adjacent object 
usage. All technical specifications and microcode for the object usage devices devel-
oped in this work are available online [8].  

2  Existing approaches to sense object usage 
Previous ubiquitous computing and ambient intelligence studies where sensors have 
been installed in real homes for research (e.g., [1-3]) have often relied on the complex 
installation of reed switch sensors. A reed switch sensor typically installed in a volun-
teer’s home consists of a data collection unit, a reed switch, and a magnet. All three 
components must be carefully aligned on an object (e.g. door, window or cabinet) in 
a way that properly activates the reed switch when the object is used. A single sensor 
of this type takes 5-10 minutes to install and test, and the installation of 200 of such 
sensors could require 16-32 man-hours of effort. This is a tremendous inconvenience 
to both the researchers and the subject in an experiment. The main advantage of using 
reed switches is good battery lifetime (possibly years, depending on object usage) that 
can be achieved even from small batteries since their associated circuitry can be kept 
in sleep mode until the reed switch is activated. However, reed switches only detect 
opening and closing events of objects such as doors, windows, cabinets, and drawers 
and are not well-suited for measuring other types of motion, such as the use of a ta-
ble, chair, or appliance.   

Object usage generally causes object movement or changes in object vibration, tilt, or 
acceleration. Therefore power efficient sensors such as vibration and tilt switches (e.g. 
mercury and ball switches) can be used to recognize object motion and to wake up 
external circuitry whenever vibration or tilt changes are detected. Unfortunately, 



these sensors are often uniaxial and orientation dependent, and their sensitivity to 
vibration or tilt is set during manufacturing. The ability to modify the sensor’s sensi-
tivity is important for detecting object usage since household objects exhibit very 
different motion characteristics, as previously discussed.  

Another alternative for measuring object usage in a power efficient way is to use a 
piezoelectric film sensor. The use of piezoelectric films as a low-cost and power effi-
cient method to measure hand jerk motions (over 2.5G) in group interactions during 
collective events was proposed in [9]. Piezofilm sensors can be extremely sensitive to 
motion, detecting even tiny vibrations in the environment; however, they do not 
measure static acceleration (orientation with respect to ground) that is important for 
detecting slow tilt/rotation movements.  

Accelerometers based on micro-electro-mechanical systems (MEMs) can also be 
used to detect object usage by measuring changes in object static and dynamic accelera-
tion. MEMs accelerometers can be very small and self contained so that they can be 
placed on nearly any household object, and installation can require no more than simply 
throwing a sensor in a drawer or using putty (adhesive material) to stick it in to a cabinet 
door. No multi-point alignment is required, so sensors that can be simply stuck on ob-
jects quickly, reducing installation time to as little as 36s per sensor, as reported in [10]. 
Installing 200 single-point-of-contact sensors in a home may take as little as 2 man-
hours of effort, a tolerable amount of time not only for researchers but even possibly for 
end-users. The main disadvantage of using MEMs accelerometers to detect object usage 
is their relatively high energy consumption. For example, continuous sampling of the 
popular ADXL202 biaxial accelerometer (~500µA@3V) at 10Hz using a 3mA micro-
controller results in a theoretical battery life of only 46 days from a CR2032 coin cell 
battery (220mA). Newer versions of the accelerometer such as the triaxial ADXL330 
(~400µA@3V) can also be used, however, improvements in battery life are minimal. 
An obvious way to increase battery life would be to increase battery size; however, this 
would make the sensor nodes larger and therefore less flexible and easier to dislodge. 
A promising alternative to detect object usage is to use touch, or hand-to-object prox-
imity. Battery-less passive radio frequency identification (RFID) tags are a cost effec-
tive way to measure object touch if a person is willing to wear a reader on or near the 
hands, embedded in bracelets or gloves [4, 6, 7]. RFID tags cost less than $1 US, and 
are small enough to be installed on tiny low-value objects such as office supplies. 
However, end users may be unwilling or unable to constantly wear a device on the 
hand. In addition, existing wearable RFID readers must be frequently recharged (e.g. 
every 2-10 hours [4, 11]) which could be potentially more annoying than replacing 
sensor batteries once or twice a year. Until wearable RFID readers are improved, 
passive RFID tags also require a good alignment and short distances (e.g. 10cm) to 
the wearable reader to be read [4, 6, 7]. The reader range could be extended, but this 
is at the expense of battery life and an increased number of false positives due to tags 
in the vicinity of objects being manipulated [4, 6, 7]. Passive RFIDs can also suffer 
from severe interference caused by metal objects and water-rich materials [12], some-
times negatively impacting performance on common objects such as food cans, sil-
verware, door knobs, and liquid containers. 

  



Table 1: Advantages and disadvantages of existing sensing technologies to detect object-usage.  

The wireless identification and sensing platform (WISP) [12] combines passive 
RFID tags and accelerometery. Readers distributed throughout a space constantly 
power the devices and motion sensing on the tags via a 1-bit accelerometer (mercury 
switch) is used to detect object usage. This approach is promising, since no battery 
replacement or wearable readers are required. However, the same challenges associ-
ated with passive RFIDs need to be overcome and since simple acceleration thresh-
olding is used to detect object usage, false positives due to adjacent object manipula-
tion remain a challenge. Consequently, the results presented in this work are also 
relevant in this setting.  

Table 1 presents a summary of the assumptions, advantages, and disadvantages of 
the existing technologies available for sensing object usage. 

3  Object usage sensor design 
Our goals when creating the object usage sensor were to create a sensor that: (1) can 
be installed quickly by a non-expert, (2) can accurately detect object-usage in the 
wide variety of everyday objects with different motion patterns (vibration, tilt, rota-
tion) and intensities without object specific thresholds, (3) minimizes the number of 
false positive activations due to adjacent motion and noise, and (4) extends the node’s 
battery life by only processing the acceleration signal when meaningful motion is 
detected. In this section, we describe the hardware and software design inspired from 
our experiences installing hundreds of sensors in real homes. 
 

Technology  Assumptions Advantages Disadvantages 
Magnetic 
reed 
switches 

Object has a distinct 
open or closed state, 
with change indicating 
usage  

Low power; relatively robust to 
adjacent object motion; relatively 
inexpensive  $2-5 (compared to 
MEMs accelerometers) 

Difficult to install (3 contact points); 
sensitive to alignment; only senses opening 
and closing events 

Vibration 
and tilt 
switches 

Object usage will result 
in object vibration or 
tilt.  

Low power; self-contained single 
point of contact to object; easy to 
install.  Wide price range depend-
ing on  size and type ($1-10) 

Sensitivity is orientation dependent 
(sensitivity for some orientations is zero); 
Cannot change sensitivity threshold; may 
trigger from adjacent vibration 

Piezoelec-
tric films 

Object usage will result 
in object’s dynamic 
acceleration change. 

Low power; high sensitivity to 
external acceleration/vibration 
relatively inexpensive <$1.5 
(compared to accelerometers); easy 
to install 

Only senses dynamic acceleration (not 
static); may trigger from adjacent motion; 
usually uniaxial and with existing form 
factors, it would result in a cumbersome 
triaxial sensor since 3 films are required 

MEMs 
accelerome-
ters 

Object usage will result 
in object acceleration 
(static or dynamic) 
change  above 
accelerometer  noise 

Triggered by vibration, motion, and 
rotation of an object; single point of 
contact to object; easy to install; 
signal can be used to discern 
adjacent object motion 

Power hungry (400-600µA@3V);  
relatively expensive ($7-12); internal sensor 
noise may result in false positives 
 

RFIDs 
 

Touch or proximity of 
object indicates use 

Small; no battery; easy to install (a 
sticker); very inexpensive (<$1); 
single point of contact to object 

Requires wearable or environmental reader;  
trade-off between reader’s range and 
objects detected  nearby (false positives); 
interference from metal or water; only 
indicates if object is present 

WISP Intel Object  usage will 
result in object  tilt 

Single point of contact  to object; 
easy to install; no battery; poten-
tially  same advantages as passive 
RFIDs and accelerometers 

Requires environmental readers (~$1500 
each); prototype stage (not yet extensively 
tested in homes); same disadvantages as 
RFIDs; susceptible to adjacent motion since  
simple thresholding is used to detect usage 



 
 (a) (b) (c) 

Figure 1. (a) Image of the object-usage sensor board and casing, (b) Schematic of the 
object-usage sensor wake-up circuitry, (c) Box of 243 sensors for collisions test.  

 

3.1  Hardware design 

The object usage sensor nodes developed in this work are built upon an existing wire-
less sensing infrastructure [10]. This sensing platform uses a featherweight MAC 
protocol in combination with a star network topology to save energy, simplify usage, 
and permit simultaneous reception from high and low sampling rate sensors. More 
details can be found in [10]. Even though the topology and communication protocols 
utilized in this platform are simple, they allowed us to easily test the performance of 
168 newly developed object usage sensors in a real home (see Section 4.6). More-
over, the hardware and software principles on which the object usage sensors are 
based and presented in this work could also be used to improve sensor performance 
and battery life for sensor nodes using state-of-the-art mesh networking protocols. 

The basic sensor board of the adopted wireless platform consists of a 
3.2x2.5x0.6cm and 8.1g (including battery) stick-on wireless node that includes a  
16Mhz 8051 microcontroller (µC), a wireless 2.4GHz transceiver, a 2-axis ±2G ac-
celerometer (ADXL202, $12 US), and a MOSFET switch to power cycle the acceler-
ometer from a CR2032 coin cell battery. Consequently, the new object usage sensor 
presented in this work is limited to this 2-axis accelerometer due to the unavailability 
of power efficient 3-axis accelerometers (e.g. ADXL330) at the time of development 
of the adopted sensing infrastructure. However, as described later, the 2-axis version 
is sufficient to achieve good performance in recognizing object usage in practice, 
although newer designs could utilize the new ADXL330 3-axis accelerometer without 
significant cost change. This basic sensor node was designed to recognize object 
usage by simply thresholding the 2-axis acceleration signal sampled at 10Hz against a 
predefined acceleration value [10]. The sensor broadcasts its ID whenever usage is 
detected. Using this simple thresholding approach to recognize object usage, the 
battery life of the sensor is about 46 days. This battery life may be sufficient for some 
ubiquitous computing test deployments, but the battery life is dependent upon the 
assumption that a sampling rate of 10Hz is sufficient to detect tasks with “instantane-
ous” stops such as shutting a drawer. When we deployed these sensors in a home, 
however, we ultimately determined that for some types of objects such as drawers and 
couches, the sampling rate of 10Hz was too low to consistently detect object usage  
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Figure 2. (a) Raw and preprocessed acceleration signals (XY AbsDiff) for an opening a 
drawer event sampled at 20Hz. (b) ROC curve showing the percentage of real vs. adjacent 
motion detected resulting from the brute-force search of the parameters at 20Hz and 10Hz. 

 

when it occurred. We found that doubling the sampling rate to 20Hz improved object 
usage detection in these objects. Unfortunately, this new sampling rate reduces the 
battery life to less than a month. Therefore, we sought a way to improve the battery 
life of the sensor node. We chose to modify the hardware to use a sensor with high 
sensitivity to motion/vibration to wake up the 2-axis accelerometer and associated 
circuitry whenever meaningful external motion is detected for a short time interval. 
Consequently, energy use is preserved by keeping all circuitry in power down mode 
(2µA) until meaningful motion is detected by the wake-up sensor.  

An obvious method to increase battery life without increasing the node complexity 
is to simply increase the battery size. For example, coin cells such as the CR2477 
(10.5g) provide 1000mA of power, 4.5 times more power than the CR2032 used by the 
nodes. Nevertheless, this modification more than doubles the node weight and size, 
increasing installation complexity and probability of dislodgement, particularly in 
small objects. Furthermore, the better the sensor’s power efficiency, the more useful 
the sensors will be in any application, no matter what battery type is used.  

We considered three power-efficient sensor options to wake-up the circuitry: (1) 
tilt switches, (2) vibration switches, and (3) cantilever-beam piezoelectric films. Tests 
run to determine the sensors’ sensitivity to external motion (see Section 4.1) indicated 
that the piezoelectric film was the best option to use. The piezoelectric film sensor 
(Minisense100 by MSI Inc.) works as a low-cost ($1.2 in qty of 50) accelerometer 
(1G) that measures dynamic acceleration without requiring external power. As a 
result, it can be used with auxiliary electronics to wake up the µC whenever the sen-
sor node experiences an acceleration that exceeds a predefined fixed threshold VTH. 
The hardware for the new object usage sensor board shown in Figure 1a consists of 
the basic sensor node board with an additional daughter board containing the circuitry 
shown in Figure 1b. As shown in Figure 1b, the output of the piezoelectric film is 
connected to the input of a nanopower comparator (MAX9015) that compares its 
generated voltage with a fixed voltage threshold VTH. VTH is obtained from a 1.236V 
voltage reference (MAX9015) and a voltage divider (R2, R3) to prevent variations in 
VTH due to battery discharge over time. The output of the comparator is connected to 



the µC external interrupt input to wake it up whenever the voltage generated by the 
piezoelectric film is greater than VTH. VTH was set in practice to maximize the sen-
sor’s response to external movement/vibration while preventing self-triggering by 
installing a variable resistor at R2 and R3. VTH was finally set to 12.5mV, an accel-
eration threshold of 0.025g. The comparator and voltage reference (MAX9015) are 
always on but consume only 1µA. The production cost for the entire ad-on board 
(administration and NRE cost not included) is $3.9 US and was calculated assuming a 
production quantity of 50 and a two-month lead-time, as quoted by a U.S company 
(including PWB tooling, masks, stencils, soldering, and no electrical testing). This 
adds only 13% to the cost of the entire sensor board but substantially improves bat-
tery life. The cost of the entire sensor board (Figure 1a) under the same previous 
assumptions is $32.3 US. Note that 37% of the cost comes from the cost of the accel-
erometer ($12 US).  

3.2  Object-usage detection algorithm 

By adding the piezo-based wake-up circuit, the sampling rate can be increased with-
out reducing battery life. However, adjacent motion still has to be differentiated from 
real motion to minimize false positive activations. The main purpose of the object-
usage detection algorithm that runs on the sensor node is to recognize when an object 
is being used by analyzing the object’s acceleration signal while minimizing false 
positives due to adjacent object manipulation and noise. Minimizing the number of 
false positives helps by (1) extending battery life because each wireless transmission 
consumes power, (2) simplifying raw data analysis and visualization for researchers 
(e.g. ethnographers), and (3) minimizing potential problems when pattern classifica-
tion or machine learning algorithms are used to infer context from object usage.  

The first step of the object usage detection algorithm consists of preprocessing the 
acceleration signals over each axis (X, Y) by computing the absolute value of the 
difference between adjacent samples to achieve orientation invariance.  

samplelastsamplecurrentAbsDiff __ −=  

This step eliminates the DC component of the static acceleration that appears when-
ever the sensor is rotated with respect to ground. Orientation invariance is important 
because a person installing the sensors should not be required to orient them in a 
particular way, increasing installation complexity. Note that even though the DC 
signal component over each axis is eliminated, changes in rotation are still detected. 

The second step consists of creating a new signal XY generated by selecting the 
preprocessed signal sample with the maximum value for both axes at each given 
instant in time (sample). This composite XY AbsDiff signal represents the overall 
motion experienced by the sensor in all axes. This step reduces complexity, since any 
processing performed on the accelerometer signals is performed only once over the 
composite signal instead of two times over each individual axis. Figure 2a shows an 
example of the 20Hz raw acceleration (X, Y) and the XY AbsDiff composite signal, 
and two object usage detections for an “opening a drawer” event. The third step is to 
differentiate meaningful acceleration samples due to true external motion from the 
oscillations generated by internal sensor noise. To achieve this, the maximum noise 
over the XY AbsDiff signal was measured from 3 sensor  nodes sitting undisturbed  



Drawer Cabinet adjacent Couch adjacent Cup Faucet 
Drawer adjacent Door Chair Remote Control Bed/pillow 
Cabinet Couch Table Toilet cover  

Table 2. Fifty training examples were collected from each of these objects (or adjacent objects) 
to determine an algorithm that could discriminate real object usage motion from adjacent.  

Feature Description 
Min value Min value above noise level of the XY AbsDiff signal 
Max value Max value above noise level of the XY AbsDiff signal 
Area under curve Sum of all values of XY AbsDiff signal 
Duration of motion Number of samples greater than the noise level in XY AbsDiff signal 
Mean Mean of the AbsDiff signal computed sample-by-sample 
Variance Variance of the AbsDiff signal computed sample-by-sample 

Table 3. Features extracted that can be computed efficiently by a low-cost low-processing 
power microcontroller.  

on a table overnight (without the piezofilm add-on, so that the sensors were sampling 
the accelerometer continuously). The maximum amplitude, or worse case internal 
noise level found was 14 (35mG). Thus, when accelerometer readings above this 
threshold are obtained, the signal is assumed to be from actual motion. 

In the forth step, real motion is differentiated from adjacent motion in real-time us-
ing the composite XY AbsDiff signal and a simple classification rule. To generate the 
classification rule, we collected 50 examples of the usage of each of the objects 
shown in Table 2 from a real home using a wired biaxial accelerometer sampling at 
20Hz. In total we collected 550 examples of real object usage and 150 examples of 
adjacent object usage.  The objects considered had a wide range of observed motion 
patterns, such as vibration (table, faucet), fast opening/closing motion (cabinets), 
smooth one-axis motion with rapid start/stops (drawers), rotation/tilt (toilet cover), 
extended motion (e.g. remote control) and combinations of these. After analyzing the 
adjacent object usage examples, we found that 96% (144) of them had XY AbsDiff 
signals greater than the noise threshold. Thus, if simple thresholding were used to 
detect object usage, 96% of adjacent object usage would be detected as real usage. 

The features shown in Table 3 were computed over the XY AbsDiff signal of the 
segmented examples (max length of 4s). We used these features and the 700 exam-
ples to evaluate the performance of algorithms that generate classification rules im-
plementable as if-then clauses. These if-then clauses and the features shown in Table 
3 can be computed efficiently in a low-cost low-processing-power microcontroller. 
Obviously, more complex algorithms such as Hidden Markov Models (HMMs) that 
take into account temporal information could also be used. However, their computa-
tional requirements are too high to be implemented in most low-cost microcontrollers 
(<$5) currently available with real-time performance.  

The WEKA toolkit [13] was used to evaluate the performance of the rule-
generating algorithms shown in the first column of Table 4 over subsets of the fea-
tures in Table 3 using 10-fold cross validation. The number of if-then clauses required 
to implement the resulting rules in C code was also defined as a complexity measure. 
Table 4 presents a summary of the performance results. The performance of the Naïve 
Bayes classifier was also investigated as a comparison baseline. Table 4 shows the 
results for the two single best discriminant features: duration of motion and area 
under curve. From Table 4, we observe that the rules generated by Ripper using only 
the duration of motion feature achieve the best compromise between classification  



 

Algorithm All  features Duration + Area + Variance Duration Area 
Naïve Bayes Classifier 81.2  (NA) 83.1  (NA) 86.1 (NA) 77.0  (NA) 
Rules PART  90.0  (21)  89.2  (9) 87.8  (3)  88.7 (3) 
Ripper down rule learner (Ridor)  89.6  (12)   89.3 (4) 87.9  (5)   88.3 (7) 
Ripper (JRip)   90.1 (8) 89.4  (8) 88.7  (2)   88. 9 (4) 
C4.5 decision tree (J48) 90.3  (24)  89.6 (10) 87.8  (4) 89.0  (4) 

Table 4. Classification performance using 10-fold crossvalidation over the 700 examples 
collected. The complexity of the classification rules produced is shown in parenthesis. 

performance (88.7%) and complexity (2). The performance is slightly higher (~1.3%) 
when using all the features; however, the complexity involved in computing the fea-
tures and implementing the decision rules increases substantially.  

The classification rule generated by Ripper is: If duration>7 then motion=real; 
Else motion=adjacent. Using this simple rule, real motion is detected whenever 7 
samples (at 20Hz) over the noise threshold are observed in the combined XY AbsDiff 
signal within a 2-4s window length (or length of usage example). To better under-
stand the trade-off between real vs. adjacent detections (TPs and FPs), we performed 
a brute-force search over the parameter space (duration, window length) to generate 
an ROC curve. This was achieved by simultaneously varying the window length from 
1 to 60 samples (.05s to 3s at 20Hz), varying the duration of motion threshold from 1 
to 10 samples, and measuring the classification rule performance on the example set.  
Figure 2b presents the ROC curves (at 10 and 20Hz sampling rates) where each point 
in the plot represents a parameter setting. Not surprisingly, point A in Figure 2b (du-
ration=1, window=1) is the most sensitive parameter setting offering near 100% 
detection accuracy for real motion but results in too many false positives for adjacent 
motion. The final parameters selected were duration=7, and window=29 (1.45s) or 
point B in Figure 2b. This corresponds to a real motion detection of 90% and adjacent 
motion detection of 21.5%. A lower FP detection of ~8% can be obtained using the 
settings of point C (duration=10, and window=29) but decreases real motion accu-
racy to ~80%. The ROC curves can be used during data collection deployments to 
trade detection performance with battery life depending on the application. Finally, 
these results were obtained by weighing the importance of all objects equally.  

In summary, the object usage detection algorithm simply counts the number of 
times the XY AbsDiff acceleration signal samples gathered at 20Hz rise above the 
noise level threshold (35mG). If the count reaches 7 samples, the device “detects” 
real motion and will transmit a sensor ID to a nearby receiver. The count is reset each 
time 29 samples (1.45s) are observed without any samples above the threshold.  

In field deployments, we noticed that it is not unusual for sensors to be placed on 
or near objects that move for very long periods of time continuously (e.g., a phone, 
running dishwasher, coffee maker, favorite chair, or leaking toilet). We therefore 
added a continuous usage/motion filter to minimize energy consumption whenever an 
object is moved for prolonged periods of time. From column 3 of Table 6 (discussed 
later), we observed that number of sensor firings for objects normally not used con-
tinuously was between 1 and 4. Consequently, the filter activates whenever the sensor 
has detected real object usage 4 consecutive times (within 1.4s of each other). While 
the filter is on, no ID broadcasts are made, and the filter turns itself off after no 
movement is detected for 2s. When the filter turns off, a special code is broadcast to 
the receiver.  
 



 

Drawer (%) Cabinet (%) Toaster (%) Toilet (%) Sensor Main 
Axis X Y Z X Y Z X Y Z X Y Z 

Total 
(%) 

Tilt  X 80 20 60 90 100 40 40 40 10 60 70 10 51.6 
Vibration  Z 90 60 50 90 100 10 100 40 40 80 100 30 65.8 
Piezofilm X 90 80 80 90 100 80 70 60 70 70 90 70 79.1 

Table 5. Sensitivity (%) of tilt, vibration, and piezoelectric film sensors to minimal external 
motion in all directions (X, Y, and Z) for four household objects when manipulated 10 times.  

4  Evaluation 
This section describes the tests performed during the development of the object usage 
sensor and its evaluation in a real home during realistic and worse case conditions.  

4.1  Sensitivity to installation orientation  

The sensitivity of a ball tilt switch (107-2006-EV by Mountain Switch), a miniature ball 
vibration switch (UBALL0100 by Particle Computer), and a piezoelectric film 
(Minisense100 by MSI Inc) were measured to determine their ability to rapidly wake-
up the accelerometer and detect object usage accurately in any orientation (X, Y, and Z). 
All these sensors are uniaxial and therefore they become less sensitive as they are 
turned away from their main sensitivity axis (i.e. are sensitive to installation orienta-
tion). Ball-based tilt and vibration switches were preferred over mercury based 
switches, because they are usually more sensitive. This test was performed by compar-
ing three sensor nodes sampling at 20 Hz each using a different sensor type as wake-up 
option and one sensor without the wake-up circuit (accelerometer continuously powered 
up). All used simple acceleration thresholding to detect object usage. These sensor 
nodes were placed in a drawer and cabinet (motion), a toilet cover (tilt), and on a toaster 
(vibration). Each object was manipulated 10 times in a worse-case scenario of minimal 
slow motion in each orientation (X, Y, and Z): the drawer and cabinet were opened, the 
toilet seat was raised, and the toaster activated. The results of comparing each sensor 
type are shown in Table 5. Note that wireless signal loss and lack of synchronization 
between the acceleration sampling between the sensors have a slight influence on the 
results. Overall, the piezofilm is the sensor with highest sensitivity to external motion 
in any direction. Consequently, only one piezofilm is required to act as a wake-up 
sensor. Orientation sensitivity problems with the tilt and vibration sensors could be 
overcome by using three sensors oriented along the X, Y, and Z axes. However, at 
current costs for the vibration switch at low quantities ($10 each), this solution would 
double the cost of the entire sensor node (~$59). For the tilt switch, its current size 
(16x4x4mm) would result in a sensor node with a cumbersome form factor that 
would increase installation complexity.  

4.2  False positives from internal sensor noise  

Recognizing object usage by simple thresholding of acceleration generates a large 
number of false positives due to (1) variations in the accelerometer internal noise 
amplitude due to fluctuations in the battery voltage while transmitting and (2) errors 
generated while reading the accelerometer values. Even when accelerometer values 



are read reliably 99% of the time, sampling over a day sometimes generates sufficient 
erroneous readings to produce several false activations. In the new object usage sen-
sor, the problem is addressed by only sampling the acceleration when necessary 
(when external motion is detected). To evaluate the FP activations generated due to 
internal sensor noise, 12 object usage sensors were left sitting undisturbed over a 
table in an office space for 24 days. The number of false positives found was zero. 

4.3  Wireless link performance and percentage of collisions  

To evaluate the performance of the object usage sensor wireless link to interference 
caused by nearby metal objects and surfaces (a problem in RFIDs), we installed the 
sensors on a metal tuna can, a metal doorknob, and a metal spoon. A computer with a 
receiver was placed a few meters away. The objects were picked up and put down or 
used normally 10 times each. All 30 of the usages were detected. The objects were 
placed on many metal objects in the realistic home test reported shortly. 

A concern when using simple MAC protocols and a star network topology, such as 
the ones used by the sensor nodes, is collisions. Therefore, we placed 243 object 
usage sensors in a large box, as shown in Figure 1c to measure collisions due to si-
multaneous activation of sensors in a real-world worse-case scenario. A computer 
with a receiver was placed a few meters away. The box was kicked hard 7 times (with 
a few seconds of no motion in between each kick) and then moved from one part of a 
room to another (taking exactly 5s per movement) five times. Each of these actions is 
very likely to activate each of the sensors in the box simultaneously. In practice, 
33.7% (82) of the sensors wireless ID transmissions were detected in the kick ex-
periment (the 66.3% not detected were lost due to collisions). We think that it is 
unlikely in a home environment that any typical “instantaneous” activity will result in 
80+ sensors firing at the exact moment. In the 5s carry event, only 26.4% of the sen-
sors transmissions were lost due to collisions. Consequently, the simple MAC proto-
col and network topology utilized is capable of detecting the simultaneous transmis-
sion of a large number of sensors and appropriate for the tests performed in this work. 
Collisions could be further minimized using a more sophisticated wireless protocol, 
as the expense of possibly requiring more costly electronics per sensor node. More 
details on theoretical collision tests based on number of nodes, transmission rate and 
time can be found in  [10]. 

4.4  Battery life 

The battery life of the object usage sensors is dependent upon the usage of the object 
on which the sensor is placed. At one extreme is a sensor that is never moved. The 
idle theoretical battery lifetime of our new object usage sensor when it undergoes no 
motion and consumes 4µA in sleep mode is approximately 6.3 years from a CR2032 
coin battery (220mAh). ). In practice, we tested the idle battery life (self discharge) of 
12 sensors by leaving them sitting undisturbed on a table in an office space for 
9.5months. The sensors were still functional and with approximately 80% battery 
charge after the end of this time period. This gives us a more realistic idle battery life 
upper-bound estimate of roughly 4 years. At the other extreme is a sensor that is mov-
ing continuously, where the extended movement filter is disabled. In that condition, 



Object ACC TP FN FP CF Brief explanation (*) 
Cabinet (open) 100 30 (1.8) 0 0 0 - 
Cabinet (close) 100 30 (2.2) 0 2* 0 Cabinets slammed 2 times 
Drawer (open) 96.6 29 (1.3) 1* 0 0 Drawer opened slowly 
Drawer (close) 100 30 (1.8) 0 3* 0 Drawer slammed 3 times 
Front door (open) 100 30 (3.3) 0 0 0 - 
Front door (close) 100 30 (2.4) 0 3* 0 Door slammed 3 times 
Wood chair on wood floor (sit down) 100 30 (2.3) 0 0 0 - 
Wood chair on wood floor (get up) 100 30 (2.8) 0 1* 0 Table moved while sitting 
Upholstered couch (sit down)  86.6 26 (1.2) 4 5* 0 Adjacent cushions activated 
Upholstered couch (get up) 63.3 19 (1.1) 11* 2 0 Less motion than sit down  
Coffee mug (sip drink)  100 30 (4.9) 0 1* 0 Dropping mug on table 
Computer keyboard (typing) 100 30 (6.8) 0 0 18 - 
Electric can opener (open a can) 100 30 (4.9) 0 3* 27 Spice rack beside can opener 
Remote control (change channel) 100 30 (5.4) 0 0 24 - 
Table (put full mug down) 20.0 6 (1) 24* 0 0 Similar to adjacent motion 
Table (sign paper) 53.3 16 (1) 14* 0 0 Not enough vibration/motion 

Table 6. Accuracy (ACC) [TP/(TP+FN)], TPs, FNs, and FPs (of nearby sensors) in a controlled 
test where 3 subjects used 10 home objects 30 times each. The number of average activations 
reported during each object usage is shown in parenthesis. The column CF shows the number 
of motion events for which the continuous motion filter was activated. 

the sensor will sample from the accelerometer and transmit continuously. Three such 
sensors were installed on a rotating arm. The battery was measured to last 7 days and 
broadcast a total of 15.4 million sensor activations. If the motion filter is on, the sen-
sors can run continuously for approximately one month and a half because the device 
is not transmitting continuously. To estimate the typical lifetime of a sensor installed 
in a home, we assume that the sensor activates 20 times a day for 3s (average motion 
duration for opening/closing a drawer). In that case, based up on the measured power 
consumption of the accelerometers and wireless transmission, the node’s battery life 
is estimated to be 1.1 years.  

4.5  False positives from movement of nearby objects 

As part of a controlled test, three subjects were asked to each use 10 home objects 
(with sensors attached) normally 30 times. Table 6 shows the true positive (TP), false 
negative (FN), and false positive (FP) activations for the total of 480 object usages. 
The FPs correspond to sensor firings of nearby objects. The table also indicates, in 
parenthesis, the average number of activations reported by the sensor during each 
object interaction. From this number, we can see that opening events in cabinets and 
drawers are more difficult to recognize than closing events. Interactions that take 
longer clearly generate more activations, such as use of the keyboard. We can also 
observe that the number of FNs is near zero for most objects (8.9% overall) except 
for extremely low magnitude usage events such as signing a paper on a table (sensor 
under table) and getting up from a couch (sensor underneath center cushion). Getting 
up from the couch is also difficult to recognize because of wireless signal loss due to 
body blocking. Putting down a mug on a table was difficult to recognize because it 
generates short duration signals similar to the ones generated by adjacencies. Finally,  
the number of FPs is high for worse-case conditions such as slamming events or in-
evitable adjacent motion. For example, sitting on the center cushion of a three-seat 
couch induced significant motion on the two adjacent cushions. FPs are also slightly 



higher by design since we decided to err on the side of being too sensitive rather than 
not sensitive enough, given that higher level inference algorithms may be able to 
further filter FPs. This relatively controlled test suggests that the sensors are able to 
detect object usage well in a variety of everyday objects. 

4.6  Realistic performance in an instrumented residential home 

We wanted to be certain that the sensors would function well when deployed in a real 
home when people use objects normally. To test this, we used an instrumented con-
dominium that has hard-wired reed switches in all the cabinetry (cabinets, drawers, 
doors, and appliance doors) and a comprehensive audio-visual recording system for 
analysis of activity and sensor firings by researchers [14].  

As a first test, two volunteers (a young married couple) not affiliated with our re-
search group were recruited and asked to live at the condominium for a period of 2.5 
months. The volunteers performed their normal daily activities while video was being 
recorded and 168 object usage sensors were attached to objects in the environment. 
Sixty-six object usage sensors had hard-wired reed switch equivalents and 102 were 
installed on objects that had no wired equivalent (e.g. sofa, appliances, chairs, etc).   

The second month of data were used to compare the wired switch sensor activa-
tions to the wireless sensor activations. We experimentally confirmed that the detec-
tion accuracy for a wired switch sensor is 99% for opening/closing events by opening 
and closing every cabinet and drawer at the condominium ten times. For the remain-
der of this analysis, we assume the wired switches accurately detect open/close 
events.  

The overall accuracy for detecting opening-closing events of the wireless sensors 
with respect to the wired switches was 86.6%±16.0. An object usage sensor was con-
sidered to correctly detect a wired switch opening-closing event whenever it fired 
within ±5s of the wired switch activation. This ±5s window was selected to permit a 
temporal comparison due to delays observed in practice in the switch sensor network. 
After building a 1s resolution histogram over the activation time differences between 
wired and wireless sensors over the ±5s windows, we determined that 77.8% of the 
activations fire within ±1s of each other, 91.4% within ±2s, 95.8% within ±3 and 
99.3% within ±3s. Delays greater than +2s represent cases where the object usage 
sensor does not fire instantly when an object is used (e.g. a cabinet door is opened), 
but instead fires sometimes during the fluid motion. Negative delays indicate that the 
wireless sensor fired before the wired switch due to delays in the wired sensor net-
works (worse case is 2s).  

There were a total of 124,064 total sensor activations where 12,099 were generated 
by the wired switch sensors and 111,965 by the object usage sensors. Note that there 
are more object usage activations because each wired switch event generates varying 
numbers of wireless sensor activations (e.g. 1-4) depending on the object type, as 
shown in parenthesis in column 3 of Table 6. Table 7 summarizes the comparison 
results for the three object types (cabinets, drawers and doors) that had equivalent 
wired switches. The table also shows the performance for some individual objects 
(results located at the bottom of Table 7 are worse-case scenarios). The TPs shown in 
the table are the number of detected wired switch activations, FNs are the wired  



Overall summary statistics 
Object  TP (µ ± σ) FN (µ ± σ) Other  Brief explanation (*) 
Cabinets 85.6 ± 17.6 14.3 ± 17.6 53,323* Doors swung but not closed 
Drawers  87.5 ± 12.3 12.4 ± 12.3 1,037* Drawer contents manipulated 
Doors  93.6 ± 4.0 6.3 ± 4.0 33,341* Dishwasher motor vibration 

Example  results for some individual objects from good (top) to worse (bottom) performance 
Object  (sensor ID) TP (%) FN (%) Other  Brief explanation (*) 
Cabinet door hallway pantry (738) 36 (100) 0 (0) 57*  Cabinet’s content manipulated 
Cabinet  door dining room (1009) 44 (97.7) 1 (2.3) 36* Cabinet’s content manipulated  
Drawer office desk (767) 32 (96.9) 1 (3.1) 57 Drawer’s content manipulated 
Cabinet door master bathroom (611) 27 (87) 4 (13) 47 Cabinet’s content manipulated 
Drawer office desk (762) 12 (70.5) 5 (29.5) 23* Drawer’s content manipulated 
Drawer utensils kitchen (530) 81 (72.9) 30 (27.1) 95*  Drawer’s content manipulated  
Cabinet door hallway pantry (979) 94 (80.3) 23 (19.7) 106*  Vibration induced by washer 
Drawer  kitchen (963) 45 (95.7) 2 (4.3) 247* Cabinet’s content manipulated  
Master bathroom door (623) 700 (97.7) 16 (2.3) 2,004* Door swung but not closed 
Apartment front door (594) 507 (90) 52 (10) 1,249* Hydraulic holder at door 
Dishwasher door (792)  180 (90) 18 (10) 29,030* Dishwasher motor vibration 
Refrigerator door (996) 12 (20) 47 (80)* 143 Wireless signal loss on metal 

Table 7. Summary of the comparison results for all the three object types (cabinets, drawers 
and doors) that had equivalent wired switch sensors and some particular examples of the two 
objects with best and worse performance. True positives (TP), false negatives (FN), and other 
object usage activations are also shown. 

Object Activations Object Activations 
Computer keyboard 7,765 Wood chair 321 
Remote control 3,519 Toilet flush 301 
Upholstered couch   451 Toilet dispenser 255 
Table  587 Can opener 68 

Table 8. Examples of the number of object usage sensor activations during one month for some 
objects that did not have a wired switch equivalent.  

switch activations not detected, and ‘other’ is the number of times the object usage 
sensors fired when no equivalent wired switch activation was found. This happens 
while manipulating the contents of drawers and cabinets after they have been opened, 
or when doors are swung without being fully opened or closed (e.g. holding door to 
let someone in). Note that ‘Other’ activations are not directly comparable to TPs and 
TNs since reed switches generate one activation per opening/closing event and object 
usage sensors generate multiple. The dishwasher door (as show in Table 7) is an 
example when the number of ‘other’ activations is high because intermittent vibration 
of the motor constantly triggers the object usage sensor while the wired switch is only 
activated during the dishwasher door opening and closing. It is unfair to consider 
these activations as FPs since vibration is induced at the sensor by real object usage. 
On the other hand, the refrigerator door is an example of a high number of FNs pro-
duced because of wireless signal loss due to a large metal surface area on the refrig-
erator’s door. Note that this is the only case where we experienced problems due to 
surrounding metal surfaces/objects  Table 8 shows examples of the number of activa-
tions for object usage sensors that did not have wired switch equivalents over one 
month of data. For some objects that are continuously manipulated, such as the re-
mote control and the computer keyboard, the number of activations is high, despite 
the use of the continuous motion filter. Among the most activated sensors we find the 
master bathroom door, the half bathroom door, the dishwasher, computer keyboard, 



laptop, remote control, and kitchen faucet. Among the least activated sensors we find 
the backyard sliding door, coffee table and some kitchen cabinets and drawers.  

Finally, during the 2.5 month data collection, 23 of the most used sensors (e.g. re-
mote control, computer keyboard, laptop, telephone, office chair, toilet flush, eye-
glasses case, and coffee mug) required battery replacement after two months. The 
battery drain results because the continuous filter only saves energy by preventing 
wireless broadcasts but still wastes energy by keeping the accelerometer on. This 
problem and our decision to err on the side of sensitivity are the reason why the bat-
tery life observed in practice for heavily used objects differs from the battery life 
estimated for a typical object in the home (1.1 years). Future versions of the continu-
ous filter might reduce the sampling rate of the accelerometer dynamically when 
continuous usage is detected to further improve battery life. In addition, future ver-
sions could increase the sample rate of the accelerometer after recognition of the first 
activation to raise the detection ratio and noise rejection at the expense of battery life. 

From the previous evaluation comparing wired switches and wireless object usage 
sensors, it was clear that we required another test that allowed us to evaluate the per-
formance of wireless sensors with no wired switch equivalents in more detail. Conse-
quently, we performed a second test where a person busily cooks a pancake recipe 
and cleans the house (sweeping, vacuuming, doing laundry, doing dishes, wiping a 
surface, etc.) for a period of four hours while video was being recorded. These activi-
ties can be considered a worse case scenario to measure object usage because the 
kitchen has the largest sensor density and a large number of objects are manipulated 
or accidentally bumped into during cleaning activities (e.g. putting away things, wip-
ing a surface, and mopping). The person was affiliated with our research group but 
not knowledgeable about the technical operation of the object usage sensors. A 
trained annotator (meticulously) labeled all object usage events (object touches >2s) 
from the four-hour dataset and video. We then computed the TP, FN, and FP detec-
tion rates for each object that had an object usage sensor placed on it. A sensor was 
marked as correctly detecting an object usage event if it activated at least once when 
the object was being manipulated. For example, a drawer manipulation that is a quick 
open and shut would be counted as one movement while manipulation consisting of 
an open, release, pause, and then grab and close would be counted as two usage 
events. The number of FP activations induced in sensors by the usage of objects 
nearby the object being used was also computed.   
Over the course of the four hours, the annotator found 327 distinct object manipula-
tions. The wireless sensors detected 276 of the 327 object manipulations giving a 
recognition accuracy of 84.4%. The number of FNs found was 51 (15.6%). Table 9 
shows the break down of the FNs and FPs and provides a brief explanation for their 
generation. Note that the FPs shown in Table 9 are given in sensor activations while 
FNs are given in object usages. As a result, since each object usage generates several 
(1-7) sensor activations depending on object type, it is not possible to directly com-
pare FPs and FNs. From Table 8, we can observe again that most FNs generated are 
either due to very slow motions or wireless signal loss due to metal surface on 
fridge’s door. We can also see that the main sources of FPs are worse-case scenarios 
of vibration traveling through surfaces such as slamming events, constant vibration in 
kitchen island due to usage of a 12kg mixing machine, and vibration traveling  



 Num % FN Reason for generation 
17 33.3 Sink faucets not fired while opened or closed slowly 
15 29.4 Wireless signal loss in 2 sensors due to large metallic surface of refrigerator’s doors 
7 13.7 Drawers and cabinets misses due to slow opening/closing events 
6 11.7 Checking on meal status events where oven’s door was not fully opened or closed 
5 9.8 Swinging doors without closing them completely 

FN 

1 1.9 Touch of upper part of rotating chair with no movement of base (sensor location) 
 

 Num % FP Reason for generation 
121 46.8 Industrial power mixing machine (KitchenAid 325W, 12.6kg) on at kitchen island 
56 21.7 Vibration propagated to objects located on top of sink (e.g. dishwashing liquid, 

liquid hand soap,  and faucets)  through metal surface while washing dishes 
35 13.5 Slamming drawers and cabinets (including kicking drawers to close them) 
34 13.1 Dropping heavy objects (flour, mixer, stove burners) on surfaces 
4 1.5 Bumping objects unintentionally while cleaning a surface or manipulating an object 
4 1.5 Bumping sensors installed at cabinetry (bottom) while vacuuming and mopping 
2 0.7 Kicking sensors with feet while standing in front of cabinets or drawers 

FP 

2 0.7 Firing of sensors located at the bottom drawer inside refrigerator when refrigerator 
turned on cooling mechanism 

Table 9. Explaination of FNs (given in object usages) and FPs (given in sensor activations) in 
the four hour test. The % column shows the percentage with respect to the total number of FNs 
and FPs. 

through sink’s metal surface to objects on the sink while washing dishes. This test 
shows how surprisingly difficult is to create an object usage sensor that works in a 
real environment. Application designers must be wary, for example, of using single 
activations to trigger events. That said, we think these results show that our sensors 
provide a nice compromise: good battery life and good object-usage detection with 
what may be an acceptable level of FNs and FPs for real-world situations. Further-
more, a portion of the FPs generated result from our decision to err on the side of 
higher sensitivity. FPs could be reduced by using other parameter setting from the 
ROC curve (Figure 2b) at the expense of lower real object usage recognition.  

An interesting path for future research might be to combine proximity sensing [4, 
6, 7] and motion sensing to partially mitigate the adjacency problem in some applica-
tions. In this approach, hand proximity to an object could be measured by the use of a 
wearable technology (e.g. RFID enabled wristwatch) and direct manipulation by 
object movement.  

6  Conclusions  
In this work we have described the challenges and practical issues involved in recog-
nizing object usage from object motion in everyday environments -- a problem that 
appears trivial at first glance but turns out to be surprisingly difficult. We have pre-
sented a portable wireless sensor to detect object usage in existing homes that (1) is 
easy to use and easy to install, (2) extends battery life for longitudinal deployments 
by combining two sensing modalities, and (3) minimizes false positives due to adja-
cent movement of objects and environmental noise. The sensor parameters suggested 
err on the side of sensitivity to object usage to minimize false negatives because off-
line filtering could further reduce false positives. However, the sensor parameters can 
be modified allowing researchers to trade real vs. adjacent object usage recognition 
accuracy and battery life depending on the application and duration of sensor de-



ployments. We evaluated the object usage sensors in a non-laboratory setting and 
showed that they can detect object usage with an accuracy of 86.6% when compared 
with wired reed switches over one month of data and with an accuracy of 84.4% in 
difficult scenario where a person is busily cooking and cleaning in a cluttered kitchen. 
Finally, we also characterized the situations where the sensors have failed and sug-
gested possible paths of future improvement.  
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