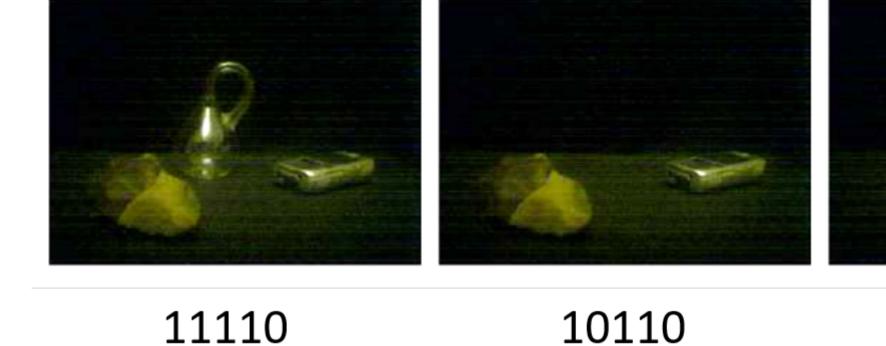
# Latent Feature Lasso

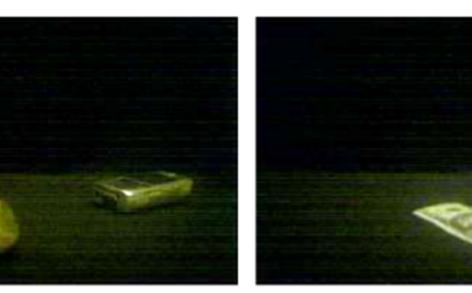
lan E.H. Yen<sup>1</sup>, Wei-Cheng Lee<sup>2</sup>, Sung-En Chang<sup>2</sup>, Arun S. Suggala<sup>1</sup>, Shou-De Lin<sup>2</sup> and Pradeep Ravikumar<sup>1</sup> <sup>1</sup>Carnegie Mellon University. <sup>2</sup>National Taiwan University

#### **Abstract**

- ▶ In this work, we propose a novel convex estimator (Latent Feature Lasso) for Latent Feature Model.
- ► To best of our knowledge, this is the first method with low-order polynomial runtime and sample complexity without restrictive assumptions on the data distribution for LFM.
- In experiments, the Latent Feature Lasso significantly outperforms other methods when there is a larger number of latent features.
- ► The method enjoys a runtime of  $O(ND + DK^2)$  runtime per iter, more scalable than a typical  $O(NDK^2)$  of existing approaches.

#### **Latent Feature Models**









11001

11110

10011

► Latent Feature Model (LFM) is a generalization of Mixture Model, where each observation is an additive combination of latent features.

Discriminative Multiclass Classification Multilabel Classification Latent Feature Model Mixture Model Generative

▶ In Latent Feature Model, each observation

$$oldsymbol{x}_n = oldsymbol{W}^T oldsymbol{z}_n + oldsymbol{\epsilon}_n$$

where  $\mathbf{x}_n \in \mathbb{R}^D$ : observation,  $\mathbf{W} \in \mathbb{R}^{K \times D}$ : feature dictionary,  $\mathbf{z}_n \in \{0,1\}^K$ : binary latent indicators, and  $\epsilon_n \in \mathbb{R}^D$ : noise.

▶ Mixture Model is a special case with  $||z_n||_0 = 1$ .

# Latent Observations Indicator **Feature Dictionary**

#### Related Works & Results

- ▶ **Goal:** Find dictionary  $W_{K\times D}$  and latent indicators  $Z: N\times K$  that best approximates observation  $X: N \times D$ .
- **Existing Approaches:** 
  - MCMC, Variational (Indian Buffet Process): No finite-time guarantee.
- Spectral Method (Tung 2014):

 $O(DK^6)$  sample complexity.  $(z \sim Ber(\pi), x \sim N(W^Tz, \sigma))$ .

► Matrix Factorization (Slawski et al., 2013):  $O(NK2^K)$  runtime complexity for exact recovery (noiseless).

- This Paper:
- A convex estimator Latent Feature Lasso.
- Low-order polynomial runtime and sample complexity.
- No restrictive assumption on p(X), even allows model mis-specification.

#### **Convex Formulation via Atomic Norm**

Empirical Risk Minimization:

$$\min_{Z \in \{0,1\}^{N \times K}} \left\{ \min_{W \in \mathbb{R}^{K \times D}} \frac{1}{2N} ||X - ZW||_F^2 + \frac{\tau}{2} ||W||_F^2 \right\},$$

► Given Z, the dual problem w.r.t. W is:

$$\min_{\boldsymbol{M}=\boldsymbol{Z}\boldsymbol{Z}^T\in\{0,1\}^{N\times N}} \left\{ \max_{\boldsymbol{A}\in\mathbb{R}^{N\times D}} \frac{-1}{2N^2\tau} tr(\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{M}) - \frac{1}{N} \sum_{i=1}^{N} L^*(\boldsymbol{x}_i, -\boldsymbol{A}_{i,:}) \right\}.$$

- ▶ **Key insight:** the function is convex w.r.t. *M*.
- ► Enforce structure  $M = ZZ^T$  via an atomic norm.
- ▶ Let  $S := \{k \mid \mathbf{z}_k \in \{0, 1\}^N\}$ . We define Atomic Norm:

$$\|M\|_{\mathcal{S}} := \min_{c \geq 0} \sum_{k \in \mathcal{S}} c_k \quad s.t. \quad M = \sum_{k \in \mathcal{S}} c_k \mathbf{z}_k \mathbf{z}_k^T.$$

► The Latent Feature Lasso estimator:

$$\min_{M} g(M) + \lambda ||M||_{\mathcal{S}}.$$

Equivalently, one can solve the estimator by

$$\min_{oldsymbol{c} \in \mathbb{R}_+^{|\mathcal{S}|}} g\left(\sum_{k \in \mathcal{S}} c_k oldsymbol{z}_k oldsymbol{z}_k^T\right) + \lambda \|oldsymbol{c}\|_1$$

**Question:** How to optimize with  $|S| = 2^N$  variables?

# **Greedy Coordinate Descent via MAX-CUT**

► At each iteration, we find the coordinate of steepest descent:

$$j^* = \underset{j}{argmax} - \nabla_j f(c) = \underset{z \in \{0,1\}^N}{argmax} \langle -\nabla g(M), zz^T \rangle$$
 (1)

which is a Boolean Quadratic problem similar to MAX-CUT:

$$\max_{\boldsymbol{z} \in \{0,1\}^N} \boldsymbol{z}^T \boldsymbol{C} \boldsymbol{z}$$

 $\triangleright$  Can be solved to a 3/5-approximation by roudning from a special type of SDP with O(ND) iterative solver.

# **Active-Set Algorithm**

 $0. \mathcal{A} = \emptyset, c = 0.$ for t = 1...T do

1. Find an approximate greedy atom  $zz^T$  by MAX-CUT-like problem:

$$\max_{z \in \{0,1\}^N} \langle -\nabla g(M), zz^T \rangle.$$

- 2. Add  $zz^T$  to an active set A.
- 3. Refine  $c_A$  via Proximal Gradient Method on:

$$\min_{\boldsymbol{c}\geq 0} g(\sum_{k\in\Lambda} c_k \boldsymbol{z}_k \boldsymbol{z}_k^T) + \lambda \|\boldsymbol{c}\|_1$$

- 4. Eliminate  $\{\boldsymbol{z}_k \boldsymbol{z}_k^T | \boldsymbol{c}_k = 0\}$  from  $\mathcal{A}$ . end for.
- ► Finding approximate greedy coordinate costs *O(ND)* (via SDP).
- ▶ Evaluating  $\nabla g(M)$ : a least-square problem of cost  $O(DK^2)$ .
- ► Each iteration costs  $O(ND) + O(DK^2)$

#### **Runtime Complexity**

Variational MF-Binary BP-Means  $(NDK^3)T$   $ND + K^5log(K)$   $(ND + K^2D)T$  $(NDK^2)T$   $(NDK^2)T$   $(NK)2^K$ 

# **Theoretical Results: Risk Bound**

Let the population risk of a dictionary W be

$$r(W) := E[\min_{z \in \{0,1\}^K} \frac{1}{2} || x - W^T z||^2].$$

Let  $W^*$  be an optimal dictionary of size K, the algorithm outputs  $\hat{W}$  with  $r(\hat{W}) \leq r(W^*) + \epsilon$ 

as long as

$$t = \Omega(\frac{K}{\epsilon})$$
 and  $N = \Omega(\frac{DK}{\epsilon^3}\log(\frac{RK}{\epsilon\rho}))$ .

- ► The result trades between risk and sparsity.
- No assumption on x except that of boundedness.
- ► The sample complexity is (quasi) linear to *D* and *K*.

### Identifiability

Let  $rank(\Theta^*) = K$ . The decomposition  $ZW = \Theta^*$  is unique if

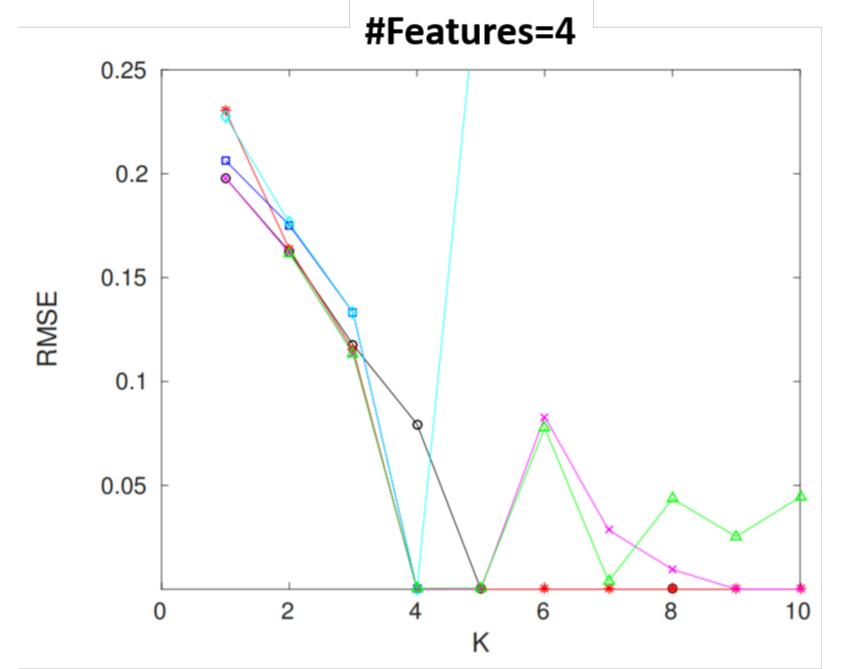
- 1.  $Z^*:N\times K$  and  $W^*:K\times D$  are both of rank K.
- 2.  $span(Z^*) \cap \{0,1\}^N \setminus \{0\} = \{Z_{:,i}^*\}_{i=1}^K$ .

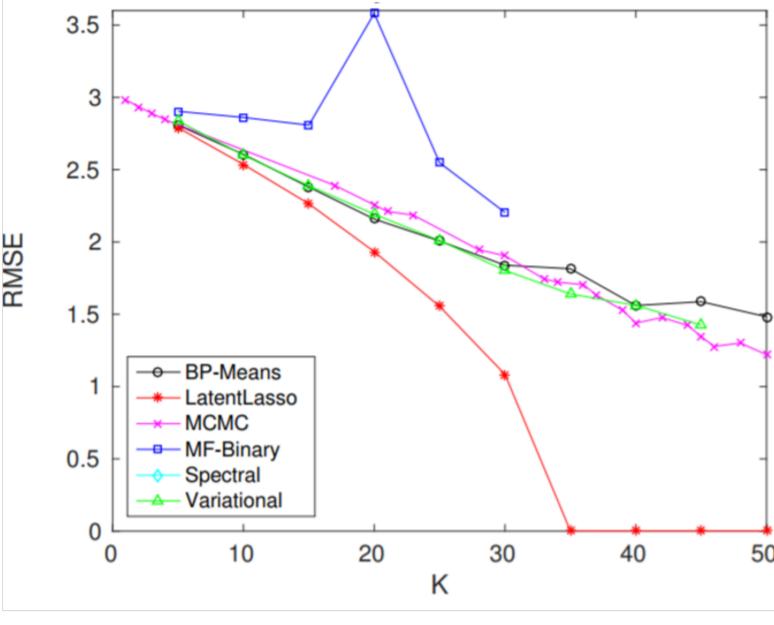
### Theoretical Results: Exact Recovery (noiseless)

Let  $X = Z^*W^*$ , and  $(Z_A, W_A)$  be a solution of Latent Feature Lasso. If the identifiability holds and  $W_A$  has full row-rank:

$$\{Z_{:,j}\}_{j\in\mathcal{A}}=\{Z_{:,j}^*\}_{j=1}^K\;,\;\{W_{j,:}\}_{j\in\mathcal{A}}=\{W_{j,:}^*\}_{j=1}^K.$$

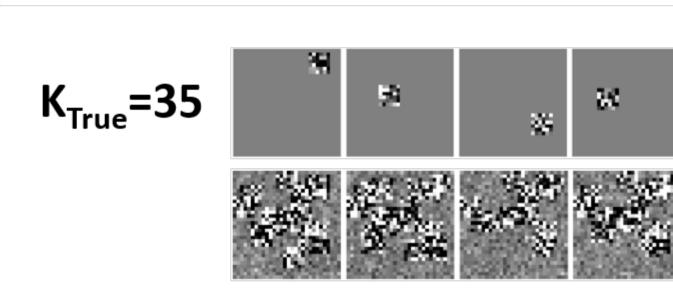
# **Experiments on Synthetic Data**





#Features=35





# **Experiments on Real Data**

