Latent Feature Lasso

lan E.H. Yen¹, Wei-Cheng Lee², Sung-En Chang², Arun S. Suggala¹, Shou-De Lin² and Pradeep Ravikumar¹ ¹Carnegie Mellon University. ²National Taiwan University

Abstract

- ▶ In this work, we propose a novel convex estimator (Latent Feature Lasso) for Latent Feature Model.
- ► To best of our knowledge, this is the first method with low-order polynomial runtime and sample complexity without restrictive assumptions on the data distribution for LFM.
- In experiments, the Latent Feature Lasso significantly outperforms other methods when there is a larger number of latent features.
- ► The method enjoys a runtime of $O(ND + DK^2)$ runtime per iter, more scalable than a typical $O(NDK^2)$ of existing approaches.

Latent Feature Models

11001

11110

10011

► Latent Feature Model (LFM) is a generalization of Mixture Model, where each observation is an additive combination of latent features.

Discriminative Multiclass Classification Multilabel Classification Latent Feature Model Mixture Model Generative

▶ In Latent Feature Model, each observation

$$oldsymbol{x}_n = oldsymbol{W}^T oldsymbol{z}_n + oldsymbol{\epsilon}_n$$

where $\mathbf{x}_n \in \mathbb{R}^D$: observation, $\mathbf{W} \in \mathbb{R}^{K \times D}$: feature dictionary, $\mathbf{z}_n \in \{0,1\}^K$: binary latent indicators, and $\epsilon_n \in \mathbb{R}^D$: noise.

▶ Mixture Model is a special case with $||z_n||_0 = 1$.

Latent Observations Indicator **Feature Dictionary**

Related Works & Results

- ▶ **Goal:** Find dictionary $W_{K\times D}$ and latent indicators $Z: N\times K$ that best approximates observation $X: N \times D$.
- **Existing Approaches:**
 - MCMC, Variational (Indian Buffet Process): No finite-time guarantee.
- Spectral Method (Tung 2014):

 $O(DK^6)$ sample complexity. $(z \sim Ber(\pi), x \sim N(W^Tz, \sigma))$.

► Matrix Factorization (Slawski et al., 2013): $O(NK2^K)$ runtime complexity for exact recovery (noiseless).

- This Paper:
- A convex estimator Latent Feature Lasso.
- Low-order polynomial runtime and sample complexity.
- No restrictive assumption on p(X), even allows model mis-specification.

Convex Formulation via Atomic Norm

Empirical Risk Minimization:

$$\min_{Z \in \{0,1\}^{N \times K}} \left\{ \min_{W \in \mathbb{R}^{K \times D}} \frac{1}{2N} ||X - ZW||_F^2 + \frac{\tau}{2} ||W||_F^2 \right\},$$

► Given Z, the dual problem w.r.t. W is:

$$\min_{\boldsymbol{M}=\boldsymbol{Z}\boldsymbol{Z}^T\in\{0,1\}^{N\times N}} \left\{ \max_{\boldsymbol{A}\in\mathbb{R}^{N\times D}} \frac{-1}{2N^2\tau} tr(\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{M}) - \frac{1}{N} \sum_{i=1}^{N} L^*(\boldsymbol{x}_i, -\boldsymbol{A}_{i,:}) \right\}.$$

- ▶ **Key insight:** the function is convex w.r.t. *M*.
- ► Enforce structure $M = ZZ^T$ via an atomic norm.
- ▶ Let $S := \{k \mid \mathbf{z}_k \in \{0, 1\}^N\}$. We define Atomic Norm:

$$\|M\|_{\mathcal{S}} := \min_{c \geq 0} \sum_{k \in \mathcal{S}} c_k \quad s.t. \quad M = \sum_{k \in \mathcal{S}} c_k \mathbf{z}_k \mathbf{z}_k^T.$$

► The Latent Feature Lasso estimator:

$$\min_{M} g(M) + \lambda ||M||_{\mathcal{S}}.$$

Equivalently, one can solve the estimator by

$$\min_{oldsymbol{c} \in \mathbb{R}_+^{|\mathcal{S}|}} g\left(\sum_{k \in \mathcal{S}} c_k oldsymbol{z}_k oldsymbol{z}_k^T\right) + \lambda \|oldsymbol{c}\|_1$$

Question: How to optimize with $|S| = 2^N$ variables?

Greedy Coordinate Descent via MAX-CUT

► At each iteration, we find the coordinate of steepest descent:

$$j^* = \underset{j}{argmax} - \nabla_j f(c) = \underset{z \in \{0,1\}^N}{argmax} \langle -\nabla g(M), zz^T \rangle$$
 (1)

which is a Boolean Quadratic problem similar to MAX-CUT:

$$\max_{\boldsymbol{z} \in \{0,1\}^N} \boldsymbol{z}^T \boldsymbol{C} \boldsymbol{z}$$

 \triangleright Can be solved to a 3/5-approximation by roudning from a special type of SDP with O(ND) iterative solver.

Active-Set Algorithm

 $0. \mathcal{A} = \emptyset, c = 0.$ for t = 1...T do

1. Find an approximate greedy atom zz^T by MAX-CUT-like problem:

$$\max_{z \in \{0,1\}^N} \langle -\nabla g(M), zz^T \rangle.$$

- 2. Add zz^T to an active set A.
- 3. Refine c_A via Proximal Gradient Method on:

$$\min_{\boldsymbol{c}\geq 0} g(\sum_{k\in\Lambda} c_k \boldsymbol{z}_k \boldsymbol{z}_k^T) + \lambda \|\boldsymbol{c}\|_1$$

- 4. Eliminate $\{\boldsymbol{z}_k \boldsymbol{z}_k^T | \boldsymbol{c}_k = 0\}$ from \mathcal{A} . end for.
- ► Finding approximate greedy coordinate costs *O(ND)* (via SDP).
- ▶ Evaluating $\nabla g(M)$: a least-square problem of cost $O(DK^2)$.
- ► Each iteration costs $O(ND) + O(DK^2)$

Runtime Complexity

Variational MF-Binary BP-Means $(NDK^3)T$ $ND + K^5log(K)$ $(ND + K^2D)T$ $(NDK^2)T$ $(NDK^2)T$ $(NK)2^K$

Theoretical Results: Risk Bound

Let the population risk of a dictionary W be

$$r(W) := E[\min_{z \in \{0,1\}^K} \frac{1}{2} || x - W^T z||^2].$$

Let W^* be an optimal dictionary of size K, the algorithm outputs \hat{W} with $r(\hat{W}) \leq r(W^*) + \epsilon$

as long as

$$t = \Omega(\frac{K}{\epsilon})$$
 and $N = \Omega(\frac{DK}{\epsilon^3}\log(\frac{RK}{\epsilon\rho}))$.

- ► The result trades between risk and sparsity.
- No assumption on x except that of boundedness.
- ► The sample complexity is (quasi) linear to *D* and *K*.

Identifiability

Let $rank(\Theta^*) = K$. The decomposition $ZW = \Theta^*$ is unique if

- 1. $Z^*:N\times K$ and $W^*:K\times D$ are both of rank K.
- 2. $span(Z^*) \cap \{0,1\}^N \setminus \{0\} = \{Z_{:,i}^*\}_{i=1}^K$.

Theoretical Results: Exact Recovery (noiseless)

Let $X = Z^*W^*$, and (Z_A, W_A) be a solution of Latent Feature Lasso. If the identifiability holds and W_A has full row-rank:

$$\{Z_{:,j}\}_{j\in\mathcal{A}}=\{Z_{:,j}^*\}_{j=1}^K\;,\;\{W_{j,:}\}_{j\in\mathcal{A}}=\{W_{j,:}^*\}_{j=1}^K.$$

Experiments on Synthetic Data

#Features=35

Experiments on Real Data

