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Abstract

We study classic streaming and sparse recovery problems using determinis-
tic linear sketches, including ¢, /¢; and /. /{; sparse recovery problems (the
latter also being known as ¢;-heavy hitters), norm estimation, and approx-
imate inner product. We focus on devising a fixed matrix A € R™*™ and
a deterministic recovery/estimation procedure which work for all possible
input vectors simultaneously. Our results improve upon existing work, the
following being our main contributions:

e A proof that £, /¢; sparse recovery and inner product estimation are
equivalent, and that incoherent matrices can be used to solve both
problems. Our upper bound for the number of measurements is m =
O(e 2 min{logn, (logn/log(1/¢))*}), which holds for any 0 < & < 1/2.
We can also obtain fast sketching and recovery algorithms by making
use of the Fast Johnson-Lindenstrauss transform. Both our running
times and number of measurements improve upon previous work. We
can also obtain better error guarantees than previous work in terms of
a smaller tail of the input vector.

e A new lower bound for the number of linear measurements required to
solve /{1 sparse recovery. We show Q(k/e? + klog(n/k)/e) measure-
ments are required to recover an x’ with ||z — 2|1 < (14 €)||@sairw)l| 1,

where zq;x) 18 * projected onto all but its largest £ coordinates in
magnitude.

e A tight bound of m = ©(¢7?log(¢?n)) on the number of measurements
required to solve deterministic norm estimation, i.e., to recover ||x||s £
ezl
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For all the problems we study, tight bounds are already known for the
randomized complexity from previous work, except in the case of ¢ /¢, sparse
recovery, where a nearly tight bound is known. Our work thus aims to study
the deterministic complexities of these problems.

Keywords: streaming algorithms, sparse recovery, heavy hitters, norm
estimation
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1. Introduction

In this work we provide new results for the point query problem as well
as several other related problems: approximate inner product, ¢;/¢; sparse
recovery, and deterministic norm estimation. For many of these problems ef-
ficient randomized sketching and streaming algorithms exist, and thus we are
interested in understanding the deterministic complexities of these problems.

1.1. Applications

Here we give a motivating application of the point query problem; for a
formal definition of the problem, see below. Consider k servers S',..., S¥,
each holding a database D', ..., D¥ respectively. The servers want to com-
pute statistics of the union D of the k databases. For instance, the servers
may want to know the frequency of a record or attribute-pair in D. It may
be too expensive for the servers to communicate their individual databases to
a centralized server, or to compute the frequency exactly. Hence, the servers
wish to communicate a short summary or “sketch” of their databases to a
centralized server, who can then combine the sketches to answer frequency
queries about D.

We model the databases as vectors z° € R™. To compute a sketch of z?, we
compute Ax? for a matrix A with m rows and n columns. Importantly, m <
n, and so Az’ is much easier to communicate than x*. The servers compute
Ax', ... AzF, respectively, and transmit these to a centralized server. Since
A is a linear map, the centralized server can compute Az for x = cz! +
...cpx® for any real numbers ci,...,c,. Notice that the ¢; are allowed to
be both positive and negative, which is crucial for estimating the frequency
of record or attribute-pairs in the difference of two datasets, which allows
for tracking which items have experienced a sudden growth or decline in



frequency. This is useful in network anomaly detection [1, 2, 3, 4, 5], and
also for transactional data [6]. It is also useful for maintaining the set of
frequent items over a changing database relation [6].

Associated with A is an output algorithm Out which given Az, outputs a
vector 2’ for which ||2' — 2|/« < €l|Ztaiir)[|1 for some number k, where 24
denotes the vector z with the top k entries in absolute value replaced with 0
(the other entries being unchanged). Thus 2’ approximates = well on every
coordinate. We call the pair (A, Out) a solution to the point query problem.
Given such a matrix A and an output algorithm Out, the centralized server
can obtain an approximation to the value of every entry in x, which depending
on the application, could be the frequency of an attribute-pair. It can also,
e.g., extract the maximum frequencies of x, which are useful for obtaining
the most frequent items. The centralized server obtains an entire histogram
of values of coordinates in x, which is a useful low-memory representation
of . Notice that the communication is mk words, as opposed to nk if the
servers were to transmit z!,..., 2"

Our correctness guarantees hold for all input vectors simultaneously using
one fixed (A, Out) pair, and thus it is stronger and should be contrasted with
the guarantee that the algorithm succeeds given Az with high probability
for some fixed input z. For example, for the point query problem, the latter
guarantee is achieved by the CountMin sketch [7] or CountSketch [8]. One
of the reasons the randomized guarantee is less useful is because of adaptive
queries. That is, suppose the centralized server computes 2’ and transmits
information about 2’ to S', ..., S*. Since 2’ could depend on A, if the servers
were to then use the same matrix A to compute sketches Ay!, ..., Ay* for
databases y!,...,y* which depend on 2/, then A need not succeed, since it
is not guaranteed to be correct with high probability for inputs y* which
depend on A.

1.2. Notation and Problem Definitions

Throughout this work [n] denotes {1,...,n}. For ¢ a prime power, F,
denotes the finite field of size q. For x € R™ and S C [n], zs denotes the
vector with (zg); = z; for i € S, and (xg); = 0 for i ¢ S. The notation x_; is
shorthand for xp, ;3. For a matrix A € R™*" and integer ¢ € [n], A; denotes
the ith column of A. For matrices A and vectors z, AT and z? denote
their transposes. For z € R" and integer k < n, we let head(z,k) C [n]
denote the set of k largest coordinates in x in absolute value, and tail(z, k) =
[n]\head(z, k). We often use Tpeqq(r) to denote Theqa(z k), and similarly for the
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tail. For real numbers a,b,e > 0, we use the notation a = (1 £ ¢)b to convey
that a € [(1—e)b, (1+¢)b]. A collection of vectors {C,...,C,} € [¢]" is called
a code with alphabet size g and block length t, and we define A(C;, C;) = |[{k :
(Ci)k # (C})k}|. The relative distance of the code is max;; A(C;, C;)/t.

We now define the problems that we study in this work. In all these
problems there is some error parameter 0 < € < 1/2, and we want to design
a fixed matrix A € R™*™ and deterministic algorithm Out for each problem
satisfying the following.

Problem 1:. In the {,/l1 recovery problem, also called the point query prob-
lem, Yz € R™, 2/ = Out(Ax) satisfies ||z — 2'||c < €||x]|1. The pair (A, Out)
furthermore satisfies the k-tail guarantee if actually ||z — 2'||oo < €l|Ztair)|1-

Problem 2:. In the inner product problem, Vr,y € R", a = Out(Ax, Ay)
satisfies o — (2, y) [ < ellz[|1 ][yl

Problem 3:. In the €y /¢, recovery problem with the k-tail guarantee, Vx € R",
x' = Out(Ax) satisfies ||z — 2|1 < (14 ¢)||Zsairr)||1-

Problem /:. In the ¢y norm estimation problem, Vx € R", a = Out(Ax)
satisfies |||z|l2 — o] < el|z];.

We note that for the first, second, and fourth problems above, our errors
are additive and not relative. By additive error we mean the error has the
form e - ), where () is a quantity depending on the problem definition, e.g.,
for the above four problems Q is || Tty ||1, | Z|1l|Yll1, [|Ztair |1, and |||,
respectively. A relative error for the first problem above would instead require
that |z} — ;| < ex; for all @ € [n]. For the second and fourth problems, a
relative error would be of the form e(x,y) and e||z||2, respectively.

Relative error is impossible to achieve with a sublinear number of mea-
surements. If A is a fixed matrix with m < n, then it has a non-trivial kernel.
Since for all the problems above an Out procedure would have to output 0
when Ax = 0 to achieve bounded relative approximation, such a procedure
would fail on any input vector in the kernel which is not the 0 vector.

For Problem 2 one could also ask to achieve additive error ¢||z||,||y||, for
p > 1. For y = e; for a standard unit vector e;, this would mean approximat-
ing x; up to additive error ¢||z||,. This is not possible unless m = Q(n?=2/?)
for 1 <p<2and m=Q(n) forp>219].

For Problem 3, it is known that the analogous guarantee of returning z’
for which ||z — 2|y < €]|taaw)||2 is not possible unless m = Q(n) [10].
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1.3. Our Contributions and Related Work

We study the four problems stated above, where we have the deterministic
guarantee that a single pair (A, Out) provides the desired guarantee for all
input vectors simultaneously.

We first show that point query and inner product are equivalent up to
changing ¢ by a constant factor. We then show that any “incoherent matrix”
A can be used for these two problems to perform the linear measurements;
that is, a matrix A whose columns have unit /5 norm and such that each pair
of columns has dot product at most € in magnitude. Such matrices can be
obtained from the Johnson-Lindenstrauss (JL) lemma [11], almost pairwise
independent sample spaces [12, 13], or error-correcting codes [14, 15], and
they play a prominent role in compressed sensing [16, 17] and mathematical
approximation theory [18]. The connection between point query and codes
was implicit in [19], though a suboptimal code was used, and the observa-
tion that the more general class of incoherent matrices suffices is novel. This
connection allows us to show that m = O(¢7? min{log n, (logn/log(1/¢))?})
measurements suffice, and where Out and the construction of A are com-
pletely deterministic.

The works [20, 21] have shown the lower bound that any incoherent matrix
must have m = Q(s2logn/log(1/¢)) when ¢ = Q(1/y/n). Meanwhile the
best known lower bound for point query is m = Q(e~2 + ¢ log(en)) [22, 23,
24], and the previous best known upper bound was m = O(s2log? n/(log 1/e+
loglogn)) [19].

If the construction of A is allowed to be Las Vegas polynomial time,
then we can use the Fast Johnson-Lindenstrauss transforms [25, 26, 27, 28|
so that Ax can be computed quickly, e.g. in O(nlogm) time as long as
m < n'/?77 [26], and with m = O(¢ 2logn). Our Out algorithm is equally
fast. We also show that for point query, if we allow the measurement matrix
A to be constructed by a polynomial Monte Carlo algorithm, then the 1/&%-
tail guarantee can be obtained essentially “for free”, i.e. by keeping m =
O(e7%logn). Previously the work [19] only showed how to obtain the 1/e-
tail guarantee “for free” in this sense of not increasing m (though the m in
[19] was worse).

We note that for randomized algorithms which succeed with high proba-
bility for any given input, it suffices to take m = O(e7*logn) by using the
CountMin data structure [7], and this is optimal [29] (the lower bound in
[29] is stated for the so-called heavy hitters problem, but also applies to the
(/{1 Tecovery problem).



For the ¢ /¢, sparse recovery problem with the k-tail guarantee, we show
a lower bound of m = Q(klog(en/k)/e + k/e?). The best upper bound is
O(klog(n/k)/€?) [30]. Our lower bound implies a separation for the complex-
ity of this problem in the case that one must simply pick a random (A, Out)
pair which works for some given input = with high probability (i.e. not for all
x simultaneously), since [31] showed an m = O(klognlog®(1/¢)/+/€) upper
bound in this case. The first summand of our lower bound uses techniques
used in [32, 31]. The second summand uses a generalization of an argument
of Gluskin [24], which was later rediscovered by Ganguly [23], which showed
the lower bound m = Q(1/&?) for point query.

Finally, we show how to devise an appropriate (A, Out) for 5 norm es-
timation with m = O(e7%log(e?n)), which is optimal. The construction of
A is randomized but then works for all x with high probability. The proof
takes A according to known upper bounds on Gelfand widths, and the re-
covery procedure Qut requires solving a simple convex program. As far as
we are aware, this is the first work to investigate this problem in the deter-
ministic setting. In the case that (A, Out) can be chosen randomly to work
for any fixed x with high probability, one can use the AMS sketch [33] with
m = O(e7?log(1/§)) to succeed with probability 1 — 4 and to obtain the bet-
ter guarantee ¢||z|l. The AMS sketch can also be used for the inner product
problem to obtain error guarantee ¢||z|2||y|l2 with the same m.

2. Point Query and Inner Product Estimation

We first show that the problems of point query and inner product esti-
mation are equivalent up to changing the error parameter £ by a constant
factor.

Theorem 1. Any solution (A, Out’) to inner product estimation with error
parameter € yields a solution (A, Out) to the point query problem with error
parameter €. Also, a solution (A, Out) for point query with error € yields a
solution (A, Out’) to inner product with error 12e. The time complezities of
Out and Out’ are equal up to poly(n) factors.

Proof. Let (A, Out’) be a solution to the inner product problem such that
Out'(Az, Ay) = (z,y) £ ¢||x|]1]|y||. Then given = € R™, to solve the point
query problem we return the vector with Out(Az); = Out'(Ax, Ae;), and our
guarantees are immediate.



Now let (A, Out) be a solution to the point query problem. Then given
z,y € R" let 2/ = Out(Azx),y" = Out(Ay). Our estimate for the inner

product is Out’(Azx, Ay) = <:E;m d(1/e) Yrea i /E)>. Observe the following: any

coordinate i with |z} > 2¢||z||; must have |z;] > €l||z]/;, and thus there
are at most 1/¢ such coordinates. Also, any ¢ with |z;| > 3el|z||; will have
|z}| > 2e||z||y. Thus, {i: |z;| > 3el|z||1} C head(z’,1/¢), and similarly for x
replaced with y. Now,

| <x;1€ad(1/s)7 y;wad(l/e)> —(z,9) ‘
< [(Thead(1/2)> Yhead(1/2)) — (Thead(@’ 1/2), Yneadty'.1/2)) |
+ |<$head(x/,1/a), ytail(y’71/a)>‘ + Kﬂcmu(x/,ua), yhead(y’,1/5)>|
+ }<$tau(mf,1/a), ytail(y’,l/e)>’

We can bound

|<x/head(1/5)7 y;Lead(l/e)> - <xh6ad(cc’,1/a)7 yhead(y’,1/5)>‘
by
1 2
o elylhei+ DD ellalhy + e llellllylly < Sellzflfyll.
i€head(z’,1/¢) i€head(z’,1/¢)
We can also bound
‘<$head(w’,1/e)7 ytail(y’,l/a)>| + ‘<xtail(ac’,1/e)7 yhead(y’,1/5)>‘
< [zl llytair 1/0) loe + [ Ttairiar17e) oo 1yl < Gellz |1 lyll:

Finally we have the bound

‘ <wtail(:r’,1/€)> Ytail(y',1/e) > | < thail(z’,l/s) HZ Hytail(y’,l/s) HQ (1>

Since || Ziait@r,1/e) |0 < 3ellz||1 and || Tiaiar1/6) |1 < [|2]|1, we have that the
value ||Ziqi(a1/0)|]2 is maximized when it has exactly 1/(3¢) coordinates
each of value exactly 3¢||z||;, which yields ¢, norm v/3¢||z||;, and similarly
for = replaced with y. Thus the right hand side of Eq. (1) is bounded by
3el|z][1]|y|l1- Thus in summary, our total error in inner product estimation is
122 ey . .



Since the two problems are equivalent up to changing ¢ by a constant
factor, we focus on the point query problem. We first show that any e-
incoherent matriz A has a correct associated output procedure Out. By an
e-incoherent matrix, we mean an m x n matrix A for which all columns A; of
A have unit ¢ norm, and for all ¢ # j we have | (4;, 4;) | < e. We have the
following lemma, which follows readily from the definition of e-incoherence.

Lemma 2. Any e-incoherent matriz A has an associated poly(mn)-time de-
terministic recovery procedure Out for which (A, Out) is a solution to the
point query problem. In fact, for any x € R", given Ax and i € [n], the
output x, satisfies |z} — x| < ellv_i|1-

Proof. Let x € R™ be arbitrary. We define Out(Ax) = AT Az. Observe that
for any i € [n], we have

v = AT Ax = Z(Ai, Aj)e; = xi £ellzil.

j=1
[l

It is known that any e-incoherent matrix has m = Q((logn)/(g?log 1/¢))
20, 21], and the JL lemma implies such matrices with m = O((logn)/e?)
[11]. For example, there exist matrices in {—1/y/m,1/y/m}"™*" satisfying
this property [34], which can also be found in poly(n) time [35] (we note
that [35] gives running time exponential in precision, but the proof holds if
the precision is taken to be O(log(n/¢)). It is also known that e-incoherent
matrices can be obtained from almost pairwise independent sample spaces
[12, 13] or error-correcting codes (see [15, 36], which have several construc-
tions), and thus these tools can also be used to solve the point query problem.
The connection to codes was already implicit in [19], though the code used in
that work is suboptimal, as we will show soon. Below we elaborate on what
bounds these tools provide for e-incoherent matrices, and what they imply
for the point query problem.

e-Incoherent matrices from JL:. The upside of the connection to the JL
lemma is that we can obtain matrices A for the point query problem such that
Ax can be computed quickly, via the Fast Johnson-Lindenstrauss Transform
introduced by Ailon and Chazelle [25] or related subsequent works. The JL
lemma states the following.



Theorem 3 (JL lemma). For any z1,...,xxy € R" and any 0 < ¢ < 1/2,
there exists A € R™™ with m = O(e~2?log N) such that for all i,j € [N] we
have ||Ax; — Axj|ls = (1 £ ¢)||x; — |2

Consider the matrix A obtained from the JL lemma when the set of
vectors is {0, e1,...,e,} € R™ Then columns A; of A have /3 norm 1+¢, and
furthermore for i # j we have | (4;, A;) | = (|4 — Ajl15 = | AlI7 = |AlI5)/2 =
(1+e)?2—-(14e)—(1+¢))/2 < 2+ €%/2. By scaling each column to
have /5 norm exactly 1, we still preserve that dot products between pairs of
columns are O(¢) in magnitude.

e-incoherent matrices from almost pairwise independence:. Next we elabo-
rate on the connection between e-incoherent matrices and almost pairwise
independence.

Definition 4. An e-almost k-wise independent sample space is a set S C
{=1,1}" satisfying the following. For any T C [n], |T| = k, the {1 distance
between the uniform distribution over {—1,1}* and the distribution of x(T')
when x is drawn uniformly at random from S is at most €. Here x(T) €
{-1, 1}|T| 18 the bitstring x projected onto the coordinates in T

Note that if S is e-almost k-wise independent, then for any |T'| = k,
| Ezes [ Lier @il < €. Therefore if we choose k = 2 and form a |S| x n matrix
where the rows of A are the elements of S, divided by a scale factor of \/m ,
then A is e-incoherent. Known constructions of almost pairwise independent
sample spaces give |S| = poly(e~!logn) [12, 37, 13]. We do not delve into
the specific bounds on |S| since they yield worse results than the JL-based
construction above. The probabilistic method implies that such an S exists
with S = O(e2?log n), matching the JL construction, but an explicit almost
pairwise independent sample space with this size is currently not known.

e-incoherent matrices from codes:. Finally we explain the connection between
e-incoherent matrices and codes. This connection is discussed in previous
work [20, 14, 15] and not novel, but we elaborate on the connection for the
sake of self-containment. Let C = {C},...,C,} be a code with alphabet size
q, block length ¢, and relative distance 1 — e. The fact that such a code
gives rise to a matrix A € R™*" for point query with error parameter ¢ was
implicit in [19], but we make it explicit here.

We let m = qt and conceptually partition the rows of A arbitrarily into
t sets each of size ¢. For the column A;, let (A4;); denote the entry of A; in
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the kth coordinate of the jth block. We set (4;);, = 1/v/t if (C;); = k, and
(A;);x = 0 otherwise. Said differently, for y = Ax we label the entries of y
with double-indices (i,7) € [t] X [¢]. We define deterministic hash functions
hi, ... he + [n] = [q] by hi(j) = (Cj)i, and we set yij = D)5 )=, T/ V1.
Our procedure Out produces a vector ' with z} = Zﬁzl Yihi(k)- Bach col-
umn has exactly ¢ non-zero entries of value 1/ V/t, and thus has ¢, norm 1.
Furthermore, for ¢ # j, (4;, A;) = (t — A(C;, Cy))/t < e.

The work [19] instantiated the above with the following Chinese remain-
der code [38, 39, 40]. Let p; < ... < p; be primes, and let ¢ = p;. We let
(C;); = ¢ mod p;. To obtain n codewords with relative distance 1 — &,
this construction required setting ¢t = O(e 'logn/(log(1/e) + loglogn))
and pi,p; = O(e 'logn) = O(tlogt). The proof uses that for i,j € [n],
i — j| has at most log, n prime factors greater than or equal to p;, and
thus C;, C; can have at most log, n many equal coordinates. This yields
m = tq = O(c2log?n/(log 1/¢ + loglogn)).

We observe here that this bound is never optimal. A random code with
q =2/cand t = O(e ! logn) has the desired properties by applying the Cher-
noff bound on a pair of codewords, then a union bound over codewords (al-
ternatively, such a code is promised by the Gilbert-Varshamov (GV) bound).

If ¢ is sufficiently small, a Reed-Solomon code performs even better. That
is, we take a finite field F, for ¢ = ©(¢ 'logn/(loglogn + log(1/¢))) and
qg = t, and each C; corresponds to a distinct degree-d polynomial p; over
F, for d = O(logn/(loglogn + log(1/€))) (note there are at least ¢ > n
such polynomials). We set (C;); = p;(j). The relative distance is as desired
since p; — p; has at most d roots over F, and thus can be 0 at most d < et
times. This yields gt = O(e2(logn/(loglogn + log(1/¢))?), which surpasses
the GV bound for ¢ < 27%°gn) and is always better than the Chinese
remainder code. We note that this construction of a binary matrix based on
Reed-Solomon codes is identical to one used by Kautz and Singleton in the
different context of group testing [41].

In Table 1 we elaborate on what known constructions of codes and JL
matrices provide for us in terms of point query. In the case of running time
for the Reed-Solomon construction, we use that degree-d polynomials can be
evaluated on d + 1 points in a total of O(dlog® dloglogd) field operations
over F, [43, Ch. 10]. In the case of [26], the constant v > 0 can be chosen
arbitrarily, and the constant in the big-Oh depends on 1/y. We note that
except in the case of Reed-Solomon codes, the construction of A is random-
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Time m Details Explicit?
O((nlogn)/e?) O(e7%logn) | A€ {-1/y/m,1/y/m}™ " [34, 35] yes
O((nlogn)/e) O(e7%logn) sparse JL [42], GV code no

O(ndlog®dloglogd/s) | O(d?/<?) Reed-Solomon code yes
O,(nlogm +m*™) | O(s*logn) FFT-based JL [26] no
O(nlogn) O(e7%log’ n) FFT-based JL [27, 28] no

Table 1: Implications for point query from JL matrices and codes. Time indicates the
running time to compute Ax given z. In the case of Reed-Solomon, d = O(logn/(loglog n+
log(1/¢))). We say the construction is “explicit” if A can be computed in deterministic time
poly(n); otherwise we only provide a polynomial time Las Vegas algorithm to construct
A.

ized (though once A is generated, incoherence can be verified in polynomial
time, thus providing a poly(n)-time Las Vegas algorithm).

Note that Lemma 2 did not just give us error €||z||;, but actually gave us
|z; — x}| < el|lz—;||1, which is stronger. We now show that an even stronger
guarantee is possible. We will show that in fact it is possible to obtain ||z —
#'||oo < €l|@tair(1/e2 |1 while increasing m by only an additive O(e~?log(e?n)),
which is less than our original m except potentially in the Reed-Solomon
construction. The idea is to, in parallel, recover a good approximation of
Thead(1/e2) With error proportional to || (1/e2)]]1 via compressed sensing,
then to subtract from Ax before running our recovery procedure. We now
give details.

We in parallel run a k-sparse recovery algorithm which has the following
guarantee: there is a pair (B, Out’) such that for any x € R", we have that
2’ = Out'(Bz) € R" satisfies ||2' — ||z < O(1/VE)||Ttair |1 Such a matrix
B can be taken to have the restricted isometry property of order k (k-RIP),
i.e. that it preserves the ¢, norm up to a small multiplicative constant factor
for all k-sparse vectors in R™.! Tt is known [44] that any such 2’ also satisfies
the guarantee that ||z, — =1 < O[T a1, where zj,,q,, is the vec-
tor which agrees with the value of 2’ on the top k coordinates in magnitude,

!Unfortunately currently the only known constructions of k-RIP constructions with the
values of m we discuss are Monte Carlo, forcing our algorithms in this section with the k-
tail guarantee to only be Monte Carlo polynomial time when constructing the measurement
matrix.
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and is 0 on the remaining coordinates. Moreover, it is also known [45] that
if B satisfies the JL lemma for a particular set of N = (en/k)°%® points in
R", then B will be k-RIP. The associated output procedure Out’ takes Bx
and outputs argmin, z,_p.||z[1 by solving a linear program [46]. All the JL
matrices in Table 1 provide this guarantee with O(klog(en/k)) rows, except
for the last row which satisfies k-RIP with O(klog(en/k)log® klog(klogn))
rows [47].

Theorem 5. Let A be an e-incoherent matriz, and let B be k-RIP. Then
there is an output procedure Out which for any x € R™, given only Ax, Bz,
outputs a vector ' with ||z" — x||occ < €l|Tiaur)||:-

Proof. Given Bz, we first run the k-sparse recovery algorithm to obtain a
vector y with ||z —y||1 = O(1)||Zwiwm|l1. We then construct our output vector
x’ coordinate by coordinate. To construct z}, we replace y; with 0, obtaining
the vector z'. Then we compute A(x — 2') and run the point query output
procedure associated with A and index i. The guarantee is that the output
w' of the point query algorithm satisfies |w! — (z — 2%);| < el|(x — 2%)_i|1,
where

||($ - Zi)—z‘”l = [[(z — y)—z‘||1 < ||17 - y||1 = 0(1)||a7tau(k)|l1,

and so [(w' + 2); — x;| = O(€)||Tau |l1- If we define our output vector by
7} = w! + z¢ and rescale € by a constant factor, this proves the theorem. [J

Theorem 5 may seem similar to the work of Krahmer and Ward [28],
which tells us that from a k-RIP matrix we can get a JL. matrix. Below, we
will set k = 1/&? in Theorem 5, so [28] would tell us that this matrix preserves
the norms, up to a constant factor, of a fixed set of exp(¢72) points. This is
not the same conclusion of Theorem 5, which states that for every vector z,
Out outputs a vector 2’ with the ¢, /¢, guarantee.

By setting £ = 1/¢% in Theorem 5 and stacking the rows of a k-RIP and
e-incoherent matrix each with O((logn)/e?) rows (here, by stacking the rows
of two matrices A and B, we mean forming the matrix C' whose rows are the
union of the rows of A and of B) we obtain the following corollary, which
says that by increasing the number of measurements m = O(e 2logn) by
only a constant factor, we can obtain a stronger tail guarantee.

Corollary 6. There is an m X n matriz A and associated output procedure
Out which for any x € R™, given Az, outputs a vector z' with |2’ — x|l <
el Ttainaye2) 1. Here m = O((logn)/e?).
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Of course, again by using various choices of e-incoherent matrices and
k-RIP matrices, we can trade off the number of linear measurements for
various tradeoffs in the running time and tail guarantee. It is also possible to
obtain a tail-error guarantee for inner product. While this is implied black-
box by reducing from point query with the k-tail guarantee, by performing
the argument from scratch we can obtain a better error guarantee involving
mixed ¢; and ¢ norms.

Theorem 7. Suppose 1/e* < n/2. There is an (A, Out) with A € R™" for
m = O(e %logn) such that for any z,y € R", Out(Ax, Ay) gives an output
which is (x, y)£e (2|2 llyeaiqse |1+ | i e 11 1Y112) +2 | rain e 1 Yraira e 1

Proof. Using the ¢5/¢; sparse recovery mentioned in Section 2, we can recover
o',y such that ||z — 2'||s < el|@saii/e2y|l1, and similarly for y — 4. The
number of measurements is the number of measurements required for 1/&2-
RIP, which is O(e 72 log(g?n)). Our estimation procedure Out simply outputs
(«',y'). Then,

[(z,y) — (2, ¢/)| = Z wi(yi — b)) + (@i — )

+ (2 — 7))

<> @iy — )
< lzll2lly = ¥l + 1Y [l2llz — 2|2
< llzll2lly = ¥'ll2 + (ly = ¢'ll2 + [[yll2) |z — 2"l
The theorem then follows by our bounds on ||z — 2'|| and ||y — ¢/]|2- O
Note that again A, Out in Theorem 7 can be taken to be applied efficiently
by using RIP matrices based on the Fast Johnson-Lindenstrauss Transform.
3. Lower Bound for 4.,/¢; Recovery

Here we provide a lower bound for the point query problem addressed in
Section 2.

Theorem 8. Let 0 < ¢ < g¢ for some universal constant eg < 1. Suppose
1/e?2 < n/2, and A is an m x n matriz for which given Az it is always
possible to produce a vector &' such that ||x — 2’| < €l|Tsairiy|1- Then

m = Q(klog(n/k)/logk + e 2+ e 'logn). N

13



Proof. The lower bound of (£72) for any k is already proven in [23].

The lower bound of Q(klog(n/k)/logk + e 'logn) follows from a stan-
dard volume argument. For completeness, we give the argument below. Let
Bi(z,7) denote the ¢; ball centered at x of radius . We use the following
lemma by Gilbert-Varshamov (see e.g. [32]).

Lemma 9 ([32, Lemma 3.1]). For any ¢,k € ZT,e € R withe < 1—1/q,
there exists a set S C {0,1}% of binary vectors with exactly k ones, such that
S has minimum Hamming distance 2ek and

log [S] > (1 — Hy(e))klogg

where H, is the q-ary entropy function Hy(x) = —xlog, o (1—x)log,(1—

Assume ¢ < 1/200. Consider a set S of n dimensional binary vectors in
R™ with exactly 1/(5¢) ones such that minimum Hamming distance between
any two vectors in S is at least 1/(10¢). By the above lemma, we can get
log|S| = Q(s 'log(en)). For any z € S, and z € By(x,1/(200¢)), we have
| Ztaaeylln < [|2]li < 1/(5e)+1/(200¢) = 41/(200¢), 2z € B1(0,41/(200¢)), and
there are at most 4/(200¢) coordinates that are ones in = and smaller than
3/4 in z, and at most 4/(200¢) coordinates that are zeros in x and at least
1/4 in z. If 2’ is a good approximation of z, then ||2" — z||» < 41/200 < 1/4
so the indices of the coordinates of 2’ at least 1/2 differ from those of x at
most 8/(200¢) < 1/(20¢) places. Thus, for any two different vectors x,y € S
and z € By(x,1/(200¢)),t € Bi(y,1/(200¢)), the outputs for inputs z and ¢
are different and hence, we must have Az # At. Notice that for the mapping
x — Az, the image of By(x,1/(200¢)) is the translated version of the image
of B1(0,41/(200¢)) scaled down in every dimension by a factor of 41. For
x’s in S, the images of B(xz,1/(200¢)) are disjoint subsets of the image of
B(0,41/(200¢)). By comparing their volumes, we have 41™ > |S/|, implying
m = Qe log(en)).

Next, consider the set S” of all vectors in R™ with exactly & coordinates
equal to 1/k and the rest equal to 0. For any z € S, and z € By(z,1/(3k)),
we have ||2um |1 < 1/(3k) and z € By(0,1+1/(3k)) centered at the origin.
Therefore, if 2z’ is a good approximation of z, the indices of the largest k
coordinates of 2z’ are exactly the same as those of x. Thus, for any two dif-
ferent vectors x,y € " and z € By(x,1/(3k),t € Bi(y,1/(3k)), the outputs
for inputs z and t are different and hence, we must have Az # At. Notice
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that for the mapping z — Az, the image of By(z,1/(3k)) is the translated
version of the image of By(0,1 + 1/(3k)) scaled down in every dimension
by a factor of 3k + 1. For z’s in S, the images of B(z,1/(3k)) are disjoint
subsets of the image of B(0,1 + 1/(3k)). By comparing their volumes, we
have (3k +1)™ > |S’| > (n/k)*, implying m = Q(klog(n/k)/logk).

0

4. Lower Bounds for £, /¢; recovery

Recall in the ¢;/¢;-recovery problem, we would like to design a matrix
A € R™™ such that for any x € R", given Az we can recover ' € R" such
that ||z — 2|1 < (1 + €)||Zsaitw)l]1- We now show two lower bounds.

Theorem 10. Let 0 < & < 1/16 be arbitrary, and k be an integer. Suppose
k/e* < (n—1)/2. Then any matriz A € R™" which allows ¢ /{-recovery
with the k-tail guarantee with error € must have m > min{n/2, (1/16)k/e*}.

Proof. Without loss of generality we may assume that the rows of A are
orthonormal. This is because first we can discard rows of A until the rows
remaining form a basis for the rowspace of A. Call this new matrix with
potentially fewer rows A’. Note that any dot products of rows of A with = that
the recovery algorithm uses can be obtained by taking linear combinations of
entries of A’z. Next, we can then find a matrix 7" € R™*™ so that T'A’ has
orthonormal rows, and given T'A’x we can recover A’x in post-processing by
left-multiplication with 7.

We henceforth assume that the rows of A are orthonormal. Since A-0 = 0,
and our recovery procedure must in particular be accurate for x = 0, the
recovery procedure must output =’ = 0 for any = € ker(A). We consider
r=(I—ATA)y for y = Zle oien). Here 7 is a random permutation on
n elements, and oy, ..., 0 are independent and uniform random variables in
{—1,1}. Since z € ker(A), which follows since AAT = I by orthonormality
of the rows of A, the recovery algorithm will output 2’ = 0. Nevertheless,
we will show that unless m > min{n/2, (1/16)k/e*}, we will have ||z|; >
(14-€)||taitr) |1 with positive probability so that by the probabilistic method
there exists « € ker(A) for which 2’ = 0 is not a valid output.

If m > n/2 we are done. Otherwise, since ||z||1 = ||Zhead(r) |1 + || Ttaiti) |15
it is equivalent to show that ||Zpeaa(k)||1 > €||Ta(k)||1 with positive proba-
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bility. We first have

E |zwi(k) 1 < E [z
<Ellyl: + E[|A" Ay|,

<k+ - (B)AT4y)3)" (2)
:k—F\/ﬁ (EyTATAATAy)1/2
—k+vn- (EyTA" Ay)" (3)

. . 1/2
=k+ \/ﬁ . (]E <Z UjAw(j)u Z O-J'Aﬂ'(j)>)
j=1 J=1

. 1/2
= k++vn- (ZE HAwu)H%)
j=1

=k + Vkn - (B[l Axll3)"?
=k + VEkm. (4)
Eq. (2) uses Cauchy-Schwarz. Eq. (3) follows since A has orthonormal rows,
so that AAT = I. Eq.(4) uses that the sum of squared entries over all
columns equals the sum of squared entries over rows, which is m since the
rows have unit norm.
We now turn to lower bounding ||Zheqar)||1. Define n; ; = o;/0; so that

for fixed ¢ the n; ; are independent and uniform +1 random variables (except
for n;;, which is 1). We have

||$head(k) ” 12 ||$7T([k]) || 1

k
= leroy — exp ATyl
=1

k
1=1

Now, for fixed ¢ € [k] we have

k
1— Z Mij <A7r(i)7 Aw(j)>
j=1

1/2

E

k 2
<|E (Z ij <A7r(i)7f47r(j)>>

j=1

k
Z Mi,j <A7r(z‘)a Aw(j)>
j=1
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> )1/2

“Aam=D HATAHF
“\nm=D [ Alle (6)

n(n - 1)

< (7)
Eq. (6) follows since ||ATA||% = trace(ATAATA) = trace(ATA) = ||A|%.
Here || - || denotes the Frobenius norm, i.e. || B||p = ZZ] B?

Putting things together, by Eq. (4), for m < (1/16)k/e? a random vector
r has ||Twpam |1 < 2k + 2vVkm < 4Vkm with probability strictly larger
than 1/2 by Markov’s inequality. Also, call an i € [k] bad if |z;| < 1/2.
Combining Eq. (5) with Eq. (7) and using a Markov bound we have that the
expected number of bad indices i € [k] is less than k/4. Thus the probability
that a random x has more than k/2 bad indices is less than 1/2 by Markov’s
inequality. Thus by a union bound, with probability strictly larger than
1—-(1/2) — (1/2) = 0, a random z taken as described simultaneously has
| %taisry |1 < 4vVkm and less than k/2 bad indices, the latter of which implies
that ||Theadr)l|r > k/2. Thus there exists a vector in @ € ker(A) for which
| Zheaawyllt > €llZtanrylt when m < (1/16)k/e?, and we thus must have
m > (1/16)k /% O

ool

We now give another lower bound via a different approach. As in [32, 31],
we use 2-party communication complexity to prove an Q((k/e)log(en/k))
bound on the number of rows of any ¢;/¢; sparse recovery scheme. The
main difference from prior work is that we use deterministic communication
complexity and a different communication problem.

We give a brief overview of the concepts from communication complexity
that we need, referring the reader to [48] for further details. Formally, in
the 1-way deterministic 2-party communication complexity model, there are
two parties, Alice and Bob, holding inputs z,y € {0, 1}", respectively. The
goal is to compute a Boolean function f(z,y). A single message m(z) is sent
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from Alice to Bob, who then outputs g(m(x),y) for a Boolean function g.
The protocol is correct if g(m(z),y) = f(z,y) for all inputs = and y. The 1-
way deterministic communication complexity of f, denoted D'~ ( f), is the
minimum over all correct protocols, of the maximum message length |m(z)|
over all inputs z.

We use the EQ(z,y) : {0,1}" x {0,1}" — {0, 1} function, which is 1 if
x = y and 0 otherwise. It is known [48] that D'=*%(EQ) = r. We show how
to use a pair (A, Out) with the property that for all vectors z, the output 2’ of
Out(Az) satisfies ||z —2'||1 < (14¢)||2tairw)||1, to construct a correct protocol
for FQ on strings x,y € {0,1}" for r = ©((k/e)lognlog(en/k)). We then
show how this implies the number of rows of A is Q((k/c) log(en/k)).

We can assume the rows of A are orthonormal as in the beginning of the
proof of Theorem 10. Let A’ be the matrix where we round each entry of A
to b = O(logn) bits per entry. We use the following Lemma of [32].

Lemma 11. (Lemma 5.1 of [32]) Consider any m X n matric A with or-
thonormal rows. Let A" be the result of rounding A to b bits per entry.
Then for any v € R™ there ezists an s € R™ with A'v = A(v — s) and
sl < n*27%v]|;.

Theorem 12. Any matriz A which allows €1 /01 -recovery with the k-tail guar-
antee with error € satisfies m = Q((k/e)log(en/k)).

Proof. Let S be the set of all strings in {0, ce/k}"™ containing exactly k/(ce)
entries equal to ce/k, for an absolute constant ¢ > 0 specified below. Observe
that log |S| = ©((k/e) log(en/k)).

In the EQ(x,y) problem, Alice is given a string z of length r = logn -
log|S|. Alice splits  into logn contiguous chunks z?!,... 21°", each con-
taining r/logn bits. She uses z* as an index to choose an element of S. She

sets
logn

U= Z 2zt
i=1
and transmits A'u to Bob.
Bob is given a string y of length r in the EQ(x,y) problem. He performs
the same procedure as Alice, namely, he splits y into log n contiguous chunks
y', ..., y'°8" each containing r/logn bits. He uses 3 as an index to choose

an element of S. He sets
logn

v = Z 20"

i=1
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Given A’u, he outputs A’(u—wv), which by applying Lemma 11 once to Au and
once to Av, is equal to A(u—wv—s) for an s with ||s]|; < n?27°(Jjull; +|v]1) <
1/n, where the last inequality follows for sufficiently large b = O(logn). If
A'(u —v) = 0, he outputs that = and y are equal, otherwise he outputs that
x and y are not equal.

Observe that if z = y, then u = v, and so Bob outputs the correct answer.
Next, we consider « # y, and show that A’(u—wv) # 0. To do this, it suffices
to show that [[(v —v — $)peqam) |1 > €llu —v — s]|1, as then Out(A(u—v —s))
could not output 0, which would also mean that A’'(u —v) # 0.

To show that |[(u — v — 8)headi)l|1 > €ljlu — v — s||1, first observe that
IIs|li < 1/n, so by the triangle inequality, it is enough to show that ||(u —
V) head(ky 11 > 2€]|u — |1

Let 2! = u —v. Let i € [logn] be the largest index of a chunk for which
a' # 9, and let j; be such that |2} | = ||2"||ec. Then |zj | = ce - 2°/k, while

12 <2-242-4+2-8+4--- 2.2 <227 = 27+2,

Let 22 be z! with coordinate j; removed. Repeating this argument on 22, we

again find a coordinate j, with |23, | > £ - [|2%[|1. It follows by induction that
after k steps, and for £ > 0 less than an absolute constant £y > 0,

ceNFk
= Vuaigolls < (1= 32) lu= vl < (1= o) lu = v,

and so
[(u = V) headyl1 > cgllu —vl|1.

Setting ¢ = 2, we have that ||(¢ — v)peqar)|[1 > 2¢]|u — v]|1, as desired.
Finally, observe the communication of this protocol is the number of
rows of A times O(logn), since this is the number of bits required to specify
m(z) = A'u. It follows by the communication lower bound for EQ), that the
number of rows of A is Q(r/logn) = Q((k/e)log(en/k)). This proves our
theorem. O

5. Deterministic Norm Estimation and the Gelfand Width

Theorem 13. For 1 < p < q < oo, let m be the minimum number such that

there is an n — m dimensional subspace S of R" satisfying sup,cg Hg”q <e.
P

Then there is an m X n matriz A and associated output procedure Out which

for any x € R", given Ax, outputs an estimate of ||v||, with additive error at
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most e||v||,. Moreover, any matriz A with fewer rows will fail to perform the
same task.

Proof. Consider a matrix A whose kernel is such a subspace. For any sketch
z, we need to return a number in the range [||z||, — €l|z||,, ||zl + €||z||,] for
any x satisfying Az = z. Assume for contradiction that it is not possible.
Then there exist z and y such that Az = Ay but ||z||,—<||zll, > |yllq+ellyllp-
However, since x — y is in the kernel of A,

lzllg = 1yllg < llz = ylly < ellz = yllp < e(llll, + l1ylln)

Thus, we have a contradiction. The above argument also shows that
given the sketch z, the output procedure can return ming. 4,—. |||, + €|z ||,-
This is a convex optimization problem that can be solved using the ellipsoid
algorithm. Below we give the details of the algorithm for finding a 1 + ¢
approximation of OPT, where OPT is equal to min,. a,—. |||, + €l|z]],-

Let y = AT(AAT)7'z. Then Ay = z = Ax, y is the projection of z on
the space spanned by the rows of A, and thus y is the vector of minimum /¢,
norm satisfying Ay = z. We have for any x satisfying Az = z,

Pyl < 0l < flall, < OPT = min |z, + ]|,
< Jlylly +llylly < A+ )Vallyl  (8)

The value ||y||2 can be computed from the sketch z, and we use this value
to find OPT using binary search. Specifically, in each step we use the el-
lipsoid algorithm to solve the feasibility problem |z, + £[|z|, < M on the
affine subspace Ax = z. Recall that when solving feasibility problems, the
ellipsoid algorithm takes time polynomial in the dimension, the running time
of a separation oracle, and the logarithm of the ratio of volumes of an initial
ellipsoid containing a feasible point and the volume of the intersection of that
ellipsoid with the feasible set. Let z* be the optimal solution of the mini-
mization problem. If M > (1+¢)OPT then by the triangle inequality every
point in the /5 ball centered at z* of radius % is feasible. Furthermore,
by Eq. (8) the set of feasible solutions is contained in the intersection of the
5 ball about the origin of radius (1 + ¢)nl|y||» and the affine subspace (or
equivalently, the ¢y ball about y of radius /(1 + €)2n2 — 1||y||s and the affine
subspace). Thus, the ellipsoid algorithm runs in time polynomial in n and
log(1/¢) assuming a polynomial time separation oracle.
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Now we describe the separation oracle. Consider a point x such that
lzllg+ellz|l, > M. We want to find a hyperplane separating x and {y|||y||,+
elly|l, < M}. Without loss of generality assume that x; > 0 for all ¢. Define
fupi as follows:

z||PeP i p < o
]|, P
fopi =1 1/k if p = oo and z; = max; z; and k = |{t|z, = max; z,}| .

0 if p = oo and x; < max; z;

The hyperplane we consider is h -y = h - x where h; = f, 4 + €fopi-
Lemma 14. [fh-y > h-x then |lylly +ellyll, > |lz]ly +llyll,-

Proof. For any y, consider y' such that y; = |y;|. We have ||y/||, + €l|¥/]l, =
llylly + €llyll, and h -y > k- y. Thus, we only need to prove the claim for y
such that y; > 0 Vi.

If p < oo then by Holder’s inequality,

lylly - lleltz™ = llylly - I ? ™ illpyomny = Y wiad ™

If p = o0 then ||y]|c > Zi:%:maxj 2 yi/k.
In either case, ||y|l, > >, Yifspi, and the same inequality holds for p
replaced with ¢. Thus,

lyllg +ellylle =y - b= - h =zl + el

]

By the above lemma, h separates = and the set of feasible solutions. This
concludes the description of the algorithm.

For the lower bound, consider a matrix A with fewer than m rows. Then
in the kernel of A, there exists v such that ||v||, > ¢||v|,. Both v and the
zero vector give the same sketch (a zero vector). However, by the stated re-
quirement, we need to output 0 for the zero vector but some positive number
for v. Thus, no matrix A with fewer than m rows can solve the problem. [

The subspace S of highest dimension of R" satisfying sup,cg Ills < ¢ g

o]l
related to the Gelfand width, a well-studied notion in functional anélysis.
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Definition 15. Fiz p < q. The Gelfand width of order m of £, and €, unit
balls in R™ is defined as

[v]lg

subspace A:codim(A)=m ycA ||U||p

Using known bounds for the Gelfand width for p = 1 and ¢ = 2, we get
the following corollary.

Corollary 16. Assume that 1/e? < n/2. There is an m X n matriz A and
associated output procedure Out which for any v € R"™, given Ax, outputs
an estimate e such that ||z|ls — el|z]i < e < |lz|l2 + €l|lz]:. Here m =
O(c2log(e?n)) and this bound for m is tight.

Proof. The corollary follows from the following bound on the Gelfand width
by Foucart et al. [22] and Garnaev and Gluskin [49]:

141
oyl (| [T¥ R/
subspace A:codim(A)=m ycA ||UH1 m
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