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Abstract

An oblivious subspace embedding (OSE) given some parameters ¢, d is a distribution D over
matrices IT € R™*" such that for any linear subspace W C R™ with dim(W) = d it holds that

]PHND(VZ‘ ew ||H£L‘H2 S (1 :tE)”iL'HQ) > 2/3

We show that the sparse Johnson-Lindenstrauss constructions of [Kane-Nelson, SODA 2012]
provide OSE’s with m = O(d'*7/e?), and where every matrix II in the support of the OSE has
only s = O(1/¢) non-zero entries per column. The value v > 0 can be any desired constant.
Our m is nearly optimal since m > d is required simply to ensure no non-zero vector of W lands
in the kernel of II. Our work gives the first OSE’s with m = o(d?) to have s = o(d). We also
identify a certain a class of distributions, which we call Oblivious Sparse Norm-Approximating
Projections (OSNAPs), such that any distribution in this class provides this guarantee.

Plugging OSNAPs into known algorithms for approximate ordinary least squares regression,
£, regression, low rank approximation, and approximating leverage scores implies faster algo-
rithms for all these problems. For example, for the approximate least squares regression problem
of computing z that minimizes ||Az — b||2 up to a constant factor, our embeddings imply a run-
ning time of O(nnz(A) + rw) Here r = rank(A), nnz(-) counts non-zero entries, and w is the
exponent of matrix multiplication. Previous algorithms had a worse dependence on r.

Our main result is essentially a Bai-Yin type theorem in random matrix theory and is likely
to be of independent interest: we show that for any fixed U € R™*? with orthonormal columns
and random sparse II, all singular values of IIU lie in [1—¢, 1+¢] with good probability. Our main
result is accomplished via the classical moment method, i.e. by bounding Etr(((TIU)*IIU — I)*)
for £ = O(logd). We also show that taking ¢ = 2 allows one to recover a slightly sharper version
of the main result of [Clarkson-Woodruff, STOC 2013] with considerably less effort. That is,
we show that one obtains an OSE with m = O(d?/e?), s = 1. The quadratic dependence on d
is optimal [Nelson-Nguyén, STOC 2013].

1 Introduction

There has been much recent work on applications of dimensionality reduction to handling large
datasets. Typically special features of the data such as low “intrinsic” dimensionality, or sparsity,

*Institute for Advanced Study. minilek@ias.edu. Supported by NSF CCF-0832797 and NSF DMS-1128155.

TPrinceton University. hlnguyen@princeton.edu. Supported in part by NSF CCF-0832797 and a Gordon Wu
fellowship.

"We say g = Q(f) when g = Q(f/polylog(f)), g = O(f) when g = O(f - polylog(f)), and g = ©(f) when g = Q(f)
and g = O(f) simultaneously.



are exploited to reduce the volume of data before processing, thus speeding up analysis time. One
success story of this approach is the applications of fast algorithms for the Johnson-Lindenstrauss
(JL) lemma [24], which allows one to reduce the dimensionality of a set of vectors while preserving
all pairwise distances. There have been two popular lines of work in this area: one focusing on fast
embeddings for all vectors [2H4}23}31,32,/47], and one focusing on fast embeddings specifically for
sparse vectors [1,[7|15,25.|26].

In this work we focus on the problem of constructing an oblivious subspace embedding (OSE) [40]
and on applications of these embeddings. Roughly speaking, the problem is to design a data-
independent distribution over linear mappings such that when data come from an unknown low-
dimensional subspace, they are reduced to roughly their true dimension while their structure (all
distances in the subspace in this case) is preserved at the same time. It can be seen as a contin-
uation of the approach based on the JL lemma to subspaces, and these embeddings have found
applications in numerical linear algebra problems such as least squares regression, ¢, regression,
low rank approximation, and approximating leverage scores [11-13]/17,38,140,44]. We refer the
interested reader to the surveys [20,[33] for an overview. Here we focus on the setting of sparse
inputs, where it is important that the algorithms take time proportional to the input sparsity.

Throughout this document we use || - || to denote ¢ norm in the case of vector arguments, and
£5_,o operator norm in the case of matrix arguments. Recall the definition of the OSE problem.

Definition 1. An oblivious subspace embedding (OSE) is a distribution over m x n matrices 11
such that for any d-dimensional subspace W C R", Prp(Vx € W ||llz|]2 € (1 £¢)llz|2) > 2/3.
Here n,d, e are given parameters of the problem and we would like m as small as possible.

OSE’s were first introduced in [40] as a means to obtain fast randomized algorithms for several
numerical linear algebra problems. To see the connection, consider for example the least squares
regression problem of computing argming ga ||Az — b|| for some A € R™*¢. Suppose II € R™*"
preserves the 5 norm up to 1 & ¢ of all vectors in the subspace spanned by b and the columns of
A. Let = argmin,, ||ITAz — IIb|| and z* = argmin,, || Az — b||. Then

(1 - e)||AZ — b|| < |[TIAZ — IIb|| < |[TIAz* — TIb|| < (1 + £)||Az* — b]|.

Thus Z provides a solution within (1 +¢)/(1 —¢) = 1+ O(e) of optimal. Since this subspace
has dimension at most d + 1, one only needs m being some function of ¢,d. Thus the running
time for approximate n x d regression becomes that for m x d regression, plus an additive term
for the time required to compute ITA, IIb. This is a gain for instances with n > d. Also, the 2/3
success probability guaranteed by Definition [I] can be amplified to 1 — § by running this procedure
O(log(1/9)) times with independent randomness and taking the best # found in any run. We
furthermore point out that another reduction from (1 + ¢)-approximate least squares regression to
OSE’s via preconditioning followed by gradient descent actually only needs an OSE with constant
distortion independent of € (see [13]), so that € = ©(1) in an OSE is of primary interest.

It is known that a random matrix with independent subgaussian entries and m = O(d/s?)
provides an OSE with 1 + ¢ distortion |19,30] . Unfortunately, the time to compute IIA is then
larger than the known O(nd“~!) time bound to solve the exact regression problem itself, where
w < 2.373... [49] is the exponent of square matrix multiplication. In fact, since m > d in any
OSE, dividing II, A into d x d blocks and using fast square matrix multiplication to then multiply
IIA would yield time ©(mnd“~2), which is at least Q(nd“~') . Thus implementing the approach
of the previous paragraph naively provides no gains. The work of [40] overcame this barrier by



choosing a special II so that IIA can be computed in time O(ndlogn) (see also |[44]). This matrix
IT was the Fast JL Transform of |2, which has the property that Ilz can be computed in roughly
O(nlogn) time for any = € R™. Thus, multiplying ITA by iterating over columns of A gives the
desired speedup.

The O(ndlogn) running time of the above scheme to compute IIA seems almost linear, and
thus nearly optimal, since the input size to describe A is nd. While this is true for dense A, in
many applications one expects A to be sparse, in which case linear in the input description actually
means O(nnz(A)), where nnz(-) counts non-zero entries. For example, one numerical linear algebra
problem of wide interest is matrix completion, where one assumes that some small number of entries
in a low rank matrix A have been revealed, and the goal is to then recover A. This problem arises
in recommendation systems, where for example the rows of A represent users and the columns
represent products, and A; ; is the rating of product j by customer i. One wants to infer “hidden
ratings” to then make product recommendations, based on the few ratings that customers have
actually made. Such matrices are usually very sparse; when for example A;; is user ¢’s score
for movie j in the Netflix matrix, only roughly 1% of the entries of A are known [51]. Some
matrix completion algorithms work by iteratively computing singular value decompositions (SVDs)
of various matrices that have the same sparsity as the initial A, then thresholding the result to only
contain the large singular values then re-sparsifying [9]. Furthermore it was empirically observed
that the matrix iterates were low rank, so that a fast low rank approximation algorithm for sparse
matrices, as what is provided in this work, could replace full SVD computation to give speedup.

In a recent beautiful and surprising work, [13] showed that there exist OSE’s with m =
poly(d/e), and where every matrix II in the support of the distribution is very sparse: even with
only s = 1 non-zero entry per column! Thus one can transform, for example, an n X d least squares
regression problem into a poly(d/e) x d regression problem by multiplying ITA in nnz(A)-s = nnz(A)
time. The work [13] gave two sparse OSE’s: one with m = O(d?log®(d/¢)/e?),s = 1, and another
with m = O(d?log(1/6)/e* + dlog?(1/68)/e*), s = O(log(d/d) /). The second construction has the
benefit of providing a subspace embedding with success probability 1 — ¢ and not just 2/3, which
is important e.g. in known reductions from ¢, regression to OSE’s [11].

Our Main Contribution: We give OSE’s with m = O(d'*7/e%),s = O,(1/e), where v > 0
can be any constant. Note s does not depend on d. The constant hidden in the O is poly(1/7).
The success probability is 1 — 1/d° for any desired constant c. One can also set m = O(d -
polylog(d/d)/e?), s = polylog(d/d)/e for success probability 1 — §. Ours are the first analyses to
give OSE’s having m = o(d?) with s = o(d). Observe that in both our parameter settings m is
nearly linear in d, which is nearly optimal since any OSE must have m > d simply to ensure no
non-zero vector of the subspace is in the kernel of II. We also show that a simpler instantiation of
our approach gives m = O(d?/e?),s = 1, recovering a sharpening of the main result of [13] with a
much simpler proof. Our quadratic dependence on d is optimal for s =1 [37].

Plugging our improved OSE’s into previous work implies faster algorithms for several numerical
linear algebra problems, such as approximate least squares regression, ¢, regression, low rank ap-
proximation, and approximating leverage scores. In fact for all these problems, except approximat-
ing leverage scores, known algorithms only make use of OSE’s with distortion ©(1) independent of
the desired 1+¢ approximation guarantee, in which case our matrices have m = O(d**7),s = O,(1),
i.e. constant column sparsity and a near-optimal number of rows.
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Figure 1: The improvement gained in running times by using our OSE’s, where v > 0 is an arbitrary
constant. Dependence on ¢ suppressed for readability; see Section [3] for dependence.

We also remark that the analyses of [13]| require Q(d)-wise independent hash functions, so
that from the seed used to generate II naively one needs an additive ©(d) time to identify the
non-zero entries in each column just to evaluate the hash function. In streaming applications
this can be improved to additive O(log2 d) time using fast multipoint evaluation of polynomials
(see |27, Remark 16]), though ideally if s = 1 one could hope for a construction that allows one to
find, for any column, the non-zero entry in that column in constant time given only a short seed
that specifies II (i.e. without writing down II explicitly in memory, which could be prohibitively
expensive for n large in applications such as streaming and out-of-core numerical linear algebra).
Recall that in the entry-wise turnstile streaming model, A receives entry-wise updates of the form
((4,4),v), which cause the change A; ; < A; ;+v. Updating the embedding thus amounts to adding
v times the jth row of IT to I1A, which should ideally take O(s) time and not O(s) +O(log? d). Our
analyses only use 4-wise independent hash functions when s = 1 and O(logd)-wise independent
hash functions for larger s, thus allowing fast computation of any column of IT from a short seed.

1.1 Problem Statements and Bounds

We now formally define all numerical linear algebra problems we consider. Plugging our new OSE’s
into previous algorithms provides speedup for all these problems (see Figure |1} the consequences
for £, regression are also given in Section . The value 7 used in bounds denotes rank(A). In what
follows, b € R™ and A € R"*4,

Leverage Scores: Let A = UXV™ be the SVD. Output the row £ norms of U up to 1 £ e.
Least Squares Regression: Compute # € R? so that ||A% — b < (1 +¢) - min,cga || Az — b
¢, Regression (p € [1,00)): Compute & € R? so that ||AZ — b||, < (1 +¢) - mingega [|Az — b||,.

Low Rank Approximation: Given integer k > 0, compute Aj, € R4 with rank([l) < k so that
A= Agllr < (1 +¢) - mingapa, )<k |4 — AgllF, where || - || is Frobenius norm.

1.2 Owur Approach

Let II € R™*" be a sparse JL matrix as in [26]. For example, one such construction is to choose
each column of I independently, and within a column we pick exactly s random locations (without
replacement) and set the corresponding entries to +1/4/s at random with all other entries in the
column then set to zero. Observe any d-dimensional subspace W C R”™ satisfies W = {x : Jy €
RY, x = Uy} for some U € R™ 9 whose columns form an orthonormal basis for W. A matrix II
preserving fo norms of all z € W up to 1+e¢ is thus equivalent to the statement ||IIUy|| = (1+e)||Uy]|



simultaneously for all y € R This is equivalent to |[IIUy| = (1+¢)|y| since |[Uy|| = |jy||. This in
turn is equivalent to all singular values of IIU lying in the interval [1—¢, 1+5]E| Write S = (IIU)*I1U,
so that we want to show all eigenvalues of S lie in [(1 — )2, (1 + ¢)?]. That is, we want to show

(1-¢)? < inf |[Syll < sup [|Syll < (1+¢)*.
llyl=1 llyll=1

By the triangle inequality we have [|Sy|| = |ly|| £ ||(S — I)y||. Thus, it suffices to show [|S — I]| <
min{l — (1 —¢)?, (1 +¢)? — 1} = 2¢ — 2 with good probability. By Markov’s inequality

P(|S—1|| >t)=P(|S —1I||* > t") <t~ - E||S — I|| <t~* Etr((S — )" (1)

for any even integer £ > 2. This is because if the eigenvalues of S — I are Ay,..., Ay, then those of
(S —I)% are A{,..., AL Thus tr((S — 1)) = >, AY > max; [N[* = ||S — I||%, since ¢ is even so that
the A/ are nonnegative. Setting £ = 2 allows m = O(d?/¢?), s = 1 with a simple proof (Theorem [4)),
and ¢ = O(logd) yields the main result with s > 1 and m =~ d/e? (Theorem [10{ and Theorem [13)).

We remark that this method of bounding the range of singular values of a random matrix
by computing the expectation of traces of large powers is a classical approach in random matrix
theory (see the work of Bai and Yin [6]). Such bounds were also used in bounding operator norms
of random matrices in work of Fiiredi and Komlés [18], and in computing the limiting spectral
distribution by Wigner [48]. See also the surveys [42,46]. We also remark that this work can
be seen as the natural non-commutative extension of the work on the sparse JL lemma itself.
Indeed, if one imagines that d = 1 so that U = u € R™! is a “l-dimensional matrix” with
orthonormal columns (i.e. a unit vector), then preserving the 1-dimensional subspace spanned by
u with probability 1 — ¢ is equivalent to preserving the £ norm of v with probability 1 —§. Indeed,
in this case the expression ||S — I|| in Eq. (1) is simply |||TTu||> — 1|. This is ezactly the JL lemma,
where one achieves m = O(1/(¢25)),s = 1 by a computation of the second moment [43], and
m = O(log(1/5)/€?),s = O(log(1/3)/€) by a computation of the O(log(1/§))th moment [26].

Our approach is very different from that of Clarkson and Woodruff |13|. For example, take the
s = 1 construction so that II is specified by a random hash function h : [n] — [m] and a random o €
{=1,1}", where [n] aef {1,...,n}. For each i € [n] we set II;(;); = 0, and every other entry in II is
set to zero. The analysis in [13] then worked roughly as follows: let Z C [n] denote the set of “heavy”
rows, i.e. those rows u; of U where [lu;|| is “large”. We write x = x7 + x|,)\z, where xg for a set S
denotes z with all coordinates in [n]\S zeroed out. Then [|z[|? = [lzz||? + |zppzl? + 2(zz, Tpp2)-
The argument in [13] conditioned on Z being perfectly hashed by h so that |zz||? is preserved
exactly. Using an approach in [25]26] based on the Hanson-Wright inequality [21] together with
a net argument, [13] argued that |lzp,\z||* is preserved simultaneously for all z € W; this step
required §2(d)-wise independence to union bound over the net. A simpler concentration argument
handled (zz,zp,)\7z). This type of analysis led to m = O(d*/e*),s = 1. A slightly more involved
refinement of the analysis, where one partitions the rows of U into multiple levels of “heaviness”,
led to the bound m = O(d?log®(d/e)/<?), s = 1. The construction in [13] with similar m and larger
s for 1 — § success probability followed a similar but more complicated analysis; that construction
hashed [n] into buckets then used the sparse JL matrices of [26] in each bucket. Meanwhile, our
analyses use the matrices of [26] directly without the extra hashing step.

We remark that in our analyses, the properties we need from an OSE are the following.

2Recall that the singular values of a (possibly rectangular) matrix B are the square roots of the eigenvalues of
B* B, where (-)* denotes conjugate transpose.



e For each II in the support of the distribution, we can write II; ; = 0; jo; ;/+/s, where the o
are i.i.d. £1 random variables, and d; ; is an indicator random variable for the event II; ; # 0.

o Vjen], > " &, =s with probability 1, i.e. every column has ezactly s non-zero entries.
e Forany S C [m] x [n], E]]; jyes iy < (s/m)ISl.
e The columns of II are i.i.d.

We call any IT drawn from an OSE with the above properties an oblivious sparse norm-approzimating
projection (OSNAP). In our analyses, the last condition and the independence of the o; ; can ac-
tually be weakened to only be (2¢)-wise independent, since we only use /th moment bounds.

We now sketch a brief technical overview of our proofs. When £ = 2, we have tr((S — I)?) =
|S — I||%, and our analysis becomes a half-page computation (Theorem. For larger ¢, we expand
tr((S—1I)%) and compute its expectation. This expression is a sum of exponentially many monomials,
each involving a product of £ terms. Without delving into all technical details, each such monomial
can be thought of as being in correspondence with some undirected multigraph (see the dot product
multigraphs in the proof of Theorem . We group monomials with isomorphic graphs, bound the
contribution from each graph separately, then sum over all graphs. Multigraphs whose edges all have
even multiplicity turn out to be easier to handle (Lemma. However most graphs G do not have
this property. Informally speaking, the contribution of a graph turns out to be related to the product
over its edges of the contribution of that edge. Let us informally call this “contribution” F(G).
Thus if E' C E is a subset of the edges of G, we can write F(G) < F((G|g)?)/2+F((G|g\g)?)/2 by
AM-GM, where squaring a multigraph means duplicating every edge, and G| is G with all edges
in F\E’ removed. This reduces back to the case of even edge multiplicities, but unfortunately the
bound we desire on F'(G) depends exponentially on the number of connected components. Thus this
step is bad, since if G is connected, then one of G|z, G| p\E can have many connected components
for any choice of E’. For example if G is a cycle on N vertices, then any partition of the edges into
two sets E', E\E’ will have that either Gg or G p\E has at least IV, /2 components. We overcome
this by showing that any F'(G) is bounded by some F(G’) with the property that every component
of G’ has two edge-disjoint spanning trees. We then put one such spanning tree into E’ for each
component, so that G|\ g and G|gr both have the same number of components as G.

Remark 2. The work [26] provided two approaches to handle large ¢ in the case of sparse JL.
The first was much simpler and relied on the Hanson-Wright inequality [21]. The Hanson-Wright
inequality does have a non-commutative generalization (see [39, Theorem 6.22]) which can handle
d > 1. Unfortunately, one should recall that the proof using [21] in [26] required conditioning
on the columns of II forming a good code, specifically meaning that no two columns have their
non-zero entries in more than O(s?/m) of the same rows. Such an analysis can be carried out in
our current context, but like in [26], this good event occurring with positive probability requires
s2/m = Q(logn), i.e. s = Q(y/mlogn). Since here m = Q(d/c?), this means s = Q(y/dlogn/e).
This was acceptable in |26] since then d was 1, but it is too weak in our current context.

The second approach of [26] was graph-theoretic as in the current work, although the current
context presents considerable complications. In particular, at some point in our analysis we must
bound a summation of products of dot products of rows of U (see Eq. ) In the case d = 1,
a row of U = wu is simply a scalar. In the case of two “rows” wu;,u; actually being scalars, the
bound [(u;, uj)| < |luil - |lus|| is actually equality. The sparse JL work implicitly exploited this fact.



Meanwhile in our case, using this bound turns out to lead to no result at all, and we must make
use of the fact that the columns of U are orthogonal to make progress.

Remark 3. There has been much previous work on the eigenvalue spectrum of sparse random
matrices (e.g. [28,29,/50]). However as far as we are aware, these works were only concerned with
U = I and n = d, and furthermore they were interested in bounding the largest singular value of II,
or the bulk eigenvalue distribution, whereas we want that all singular values are 1+¢e. On the other
hand many of these works did consider entries of II coming from distributions more general than
+1, although this is not relevant for our algorithmic purposes. Our biggest technical contribution
comes from dealing with U not being the identity matrix, since in the case when U = I, all graphs
G in our technical overview have no edges other than self-loops and are much simpler to analyze.

1.3 Other Related Work

Simultaneously and independently of this work, Mahoney and Meng [34] showed that one can
set m = O(d*/e*),s = 1. Their argument was somewhat similar, although rather than using
1S = I||* < tr((S — I)?) as in Eq. (1)), [34] used the Gershgorin circle theorem. After receiving
our manuscript as well as an independent tip from Petros Drineas, the authors produced a second
version of their manuscript with a proof and result that match our Theorem [l Their work also
gives an alternate algorithm for (1 4 ¢) approximate ¢, regression in O(nnz(A)logn + poly(d/¢))
time, without using the reduction in [11]. Their ¢, regression algorithm has the advantage over this
work and over [13] of requiring only poly(d) space, but has the disadvantage of only working for
1 < p <2, whereas both this work and [13] handle all p € [1, c0).

Another simultaneous and independent related work is that of Miller and Peng [35]. They
provide a subspace embedding with m = (d'*7 + nnz(A4)/d®)/e?, s = 1. Their embedding is
non-oblivious, meaning the construction of II requires looking at the matrix A. Their work has
the advantage of smaller s by a factor O,(1/¢) (although for all problems considered here except
approximating leverage scores, one only needs OSE’s with ¢ = ©(1)), and has the disadvantage of
m depending on nnz(A) > n, and being non-oblivious, so that they cannot provide a poly(d)-space
algorithm in one-pass streaming applications. Furthermore their embeddings do not have a property
required for known applications of OSE’s to the low rank approximation problem (namely the
approximate matrix multiplication property of Eq. ), and it is thus not known how to use their
embeddings for this problem. Their embeddings also only fit into the reduction from ¢, regression
[11] when n,d are polynomially related due to their failure probability being Q(1/poly(d)). For
this regime they provide the same asymptotic speedup over [13] as our work.

2 Analysis

In this section let the orthonormal columns of U € R™*¢ be denoted u', ..., u?. We will implement
Eq. (1) and show Etr((S —I)f) < t*-6 for t = 2¢ —<? and 6 € (0,1) a failure probability parameter.
Before proceeding with our proofs below, observe that for all k, k&
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Noting (u¥, u¥) = [[uF|> = 1 and (uF, u¥") = 0 for k # k', we have for all k, &’
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2.1 Analysis for (=2
We first show that one can set m = O(d?/<?), s = 1 by performing a 2nd moment computation.

Theorem 4. For Il an OSNAP with s =1 and ¢ € (0,1), with probability at least 1 —¢ all singular
values of TIU are 1 + ¢ as long as m > §~1(d? + d)/(2e — €%)?, o is 4-wise independent, and h is
pairwise independent.

Proof. We need only show Etr((S —I)?) < (2e —%)?- 6. Since tr((S —1I)?) = ||S — I||%, we bound
the expectation of this latter quantity. We first deal with the diagonal terms of S — I. By Eq. ,

- 2 k2 2 k4
:ZZW(’U%’) (ug) S%'HU |*=—

r=1 i#j

Thus the diagonal terms in total contribute at most 2d/m to E||S — I||%.
We now focus on the off-diagonal terms. By Eq. , E(S — I)i w 1s equal to

/ / 1 /
k, k' k k kN2 K k, k' k k
mQZZ( 2 ubul u]u]>—%2((ul)( )2+ ubul u]u]>.
r=1 i#j i)

Noting 0 = (u¥,u*)? = 377 (uF)?(uF)? + Dot ufuf/ufu;“’ we have that >, ufuf,ufué"/ <0, so

]. k k/ 1
— I =

B(S — Diw < - S (k) <
1#]

Summing over k # k', the total contribution from off-diagonal terms to E||S — I||% is at most
d(d —1)/m. Thus E||S — I||% < d(d + 1)/m, so it suffices to set m > §~td(d+1)/(2e —£?)2. W

2.2 Analysis for ¢ = O(logd)

We now show that one can set m ~ d/e2, for slightly larger s by performing a ©(log d)th moment
computation. Before proceeding, it is helpful to state a few facts that we will repeatedly use. Recall
that u* denotes the ith column of U, and we will let u; denote the ith row of U.

Lemma 5. ), wu; = 1.

Proof.
n
(Z uk“Z) = (Z ukuk) € = Z(Uk) (uk)j = (', ),
k=1 ij k=1
and this inner product is 1 for ¢ = j and 0 otherwise. |



Lemma 6. For all i € [n], ||u;|| < 1.

Proof. We can extend U to some orthogonal matrix U’ € R"*"™ by appending n — d columns. For
the rows u} of U’ we then have ||u;|| < [lu}|| = 1. [ |

Theorem 7 ( [36,45]). A multigraph G has k edge-disjoint spanning trees iff
[Ep(G)| = k(|P| - 1)

for every partition P of the vertex set of G, where Ep(G) is the set of edges of G crossing between
two different partitions in P.

The following corollary is standard, and we will later only need it for the case k = 2.

Corollary 8. Let G be a multigraph formed by removing at most k edges from a multigraph G’
that has edge-connectivity at least 2k. Then G must have at least k edge-disjoint spanning trees.

Proof. For any partition P of the vertex set, each partition must have at least 2k edges leaving it
in G’. Thus the number of edges crossing partitions must be at least k|P| in G’, and thus at least
k|P| — k in G. Theorem [7| thus implies that G has k edge-disjoint spanning trees. |

Fact 9. For any matriz B € C*>?, ||B|| = SUD| |, |yll=1 T BY-

Proof. We have supj =1 "By < || B| since 2*By < ||z - [| B]| - [ly[|. To show that unit norm
x,y exist which achieve ||B||, let B = UXV™* be the singular value decomposition of B. That is,
U,V are unitary and ¥ is diagonal with entries o1 > 09 > ...04 > 0 so that ||B|| = o;. We can
then achieve x* By = o1 by letting « be the first column of U and y be the first column of V. B

Theorem 10. For II an OSNAP with s = O(log3(d/d)/e) and € € (0,1), with probability at
least 1 — &, all singular values of TIU are 1 + ¢ as long as m = Q(dlog®(d/8)/e?) and o, h are
Q(log(d/é))-wise independent.

Proof. We bound Etr((S — I)!) for ¢ = ©(logd) an even integer then apply Eq. (1). By induction
on £, for any B € R"™™ and ¢ > 1,
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(Bz)m- = Z H By, t,.., and thus tr(Bg) = Z H By -

t1,...,t5+1€[n] k=1 tl,...,thrlG[n} k=1
tlzi,t2+1:j t1:t£+1

Applying this identity to B = S — I yields

¢
Etr((S —I1)%) = €. E Oryviu Ory iy Ore iy Oy iy w511 (3)
- Sg Tl OTEJt Y Tt Y TeJt iy gy
ki,k2,....keyp1 t=1
ki1=kgy1
il;’éjlv"'vil?éjﬁ
T150.5T0

We now outline the strategy to bound Eq. . For each monomial v appearing on the right
hand side of Eq. we associate a three-layered undirected multigraph G, with labeled edges
and unlabeled vertices. We call these three layers the left, middle, and right layers, and we refer



to vertices in the left layer as left vertices, and similarly for vertices in the other layers. Define
y={i1,...,0¢,1,...,Jer| and z = [{r1,...,re}|. The graph Gy, has ¢ left vertices, y middle vertices
corresponding to the distinct 44, j; in ¥, and z right vertices corresponding to the distinct ;. For the
sake of brevity, often we refer to the vertex corresponding to i; (resp. ji, r¢) as simply i; (resp. jg, 7¢).
Thus note that when we refer to for example some vertex iy, it may happen that some other iy or jy
is also the same vertex. We now describe the edges of G,. For ¢ = Hle Ory 34Oy js Ore,is O ,Jtuftt uf:“
we draw 4/ labeled edges in G, with distinct labels in [4¢]. For each t € [¢] we draw an edge from
the tth left vertex to i; with label 4(¢ — 1) + 1, from i; to r, with label 4(¢ — 1) + 2, from r; to j;
with label 4(¢t — 1) +3, and from j; to the (t+ 1)st left vertex with label 4(¢ —1) 4+ 4. Many different
monomials 1 will map to the same graph G; in particular the graph maintains no information
concerning equalities amongst the k;, and the y middle vertices may map to any y distinct values in
[n], and the right vertices to any z distinct values in [m]. We handle the right hand side of Eq. (3]
by grouping monomials 1 mapping to the same G, bounding the total contribution of G in terms
of its graph structure when summing all ¢ with Gy, = G, then summing contributions over all G.

Before continuing further we introduce some more notation then make a few observations. For
a graph G as above, recall G has 4/ edges, and we refer to the distinct edges (ignoring labels) as
bonds. We let E(G) denote the edge multiset of a multigraph G and B(G) denote the bond set.
We refer to the number of bonds a vertex is incident upon as its bond-degree, and the number of
edges as its edge-degree. We do not count self-loops for calculating bond-degree, and we count them
twice for edge-degree. We let LM (G) be the induced multigraph on the left and middle vertices of
G, and M R(G) be the induced multigraph on the middle and right vertices. We let w = w(G) be
the number of connected components in M R(G). We let b = b(G) denote the number of bonds in
MR(G) (note M R(G) has 2¢ edges, but it may happen that b < 2¢ since G is a multigraph). Given
G we define the undirected dot product multigraph G with vertex set [y]. Note every left vertex of
G has edge-degree 2. For each t € [(] an edge (7, 7) is drawn in G between the two middle vertices
that the tth left vertex is adjacent to (we draw a self-loop on ¢ if i = 7). We label the edges of G
according to the natural tour on G (by following edges in increasing label order), and the vertices
with distinct labels in [y] in increasing order of when each vertex was first visited by the same tour.
We name G the dot product multigraph since if some left vertex t has its two edges connecting to
vertices 4, j € [n], then summing over k; € [d] produces the dot product (u;,u;).

Now we make some observations. Due to the random signs o, ;, a monomial ¢ has expectation
zero unless every bond in M R(G) has even multiplicity, in which case the product of random signs
is 1. Also, note the expected product of the d,; is at most (s/m)? by OSNAP properties. Thus
letting G be the set of all such graphs G with even bond multiplicity in M R(G) that arise from some
monomial 1 appearing in Eq. (3)), and letting i = (i1, j1,...,%¢,j¢), k = (k1,. .., ko), v = (r1,..., 1),

J4 l
ERCERAEE DI Wl O | LR B w1
t=1 k

Geg ir t=1
G(i,r):G
1 4 l
= ? Z Z El—‘[ért,lz Tt H ult+17ujt
Geg ir t=1 t=1
G(i’r):G
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— é Z ZH(uit+l7ujt> : Z ]EH5Tt’it5rt’jt

Geg i t=1 r t=1
Gin=G

IA
|

b
SE I ) RUCH D DI | RUNTS W
Geg a1,....ay€N] ec B(G)
Vitj aiFa; e=(i,5)
where in the above expressions we treat ip41 as 71 and ks1q as k.

It will also be convenient to introduce a notion we will use in our analysis called a generalized
dot product multigraph. Such a graph G is just as in the case of a dot product multigraph, except
that each edge e = (7,j) is associated with some matrix M.. We call M, the edge-matriz of e.
Furthermore, for an edge e = (i, ) with edge-matrix M., we also occasionally view e as the edge
(4,1), in which case we say its associated edge-matrix is M. We then associate with G the product

H (uai,Meuaj>.

<G
e=(4,5)

Note that a dot product multigraph is simply a generalized dot product multigraph in which M, = I
for all e. Also, in such a generalized dot product multigraph, we treat multiedges as representing the
same bond iff the associated edge-matrices are equal (multiedges may have different edge-matrices).

Lemma 11. Let H be a connected generalized dot product multigraph on vertex set [N] with E(H) #
0 and where every bond has even multiplicity. Also suppose that for alle € E(H), ||[M.|| < 1. Then

Z Z H Var, Meva,) < |le]?,

az=1 an=lecE(H

e=(i J)
where Vg, = Uq, fori # 1, and vy, equals some fized vector ¢ with ||c|| < 1.

Proof. Let 7 be some permutation of {2,...,N}. For a bond ¢ = (i, j) € B(H), let 2a, denote
the multiplicity of ¢ in H. Then by ordering the assignments of the a; in the summation

Z H <Uai7 Mevaj>

az,....,an€[n] eeE(H)
e=(4.j)

according to 7, we obtain the exactly equal expression

Z H <vaﬂ(N),M Va;) y2oa .. Z H Va2 My va1>2aq (5)

ar(ny=1 q€B(H ar2)=1 gqeB(H
q=(m(N ) /) q=(m ()»J)
N§7r*1(j) 2<m1(5)

Here we have taken the product over t < 771(5) as opposed to t < 7~!(j) since there may be self-
loops. By Lemma@and the fact that ||c|| < 1 we have that for any 4, 7, (v;, v;)% < ||vi||? - |lv;]]? < 1,
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so we obtain an upper bound on Eq. by replacing each <Ua7,(t
We can thus obtain the sum

Z H <U“ﬂ(N) » M U“J ’ Z H Va(ays Mqvfl]‘>27 (6)

ar(n)=1 qeB(H ar2)=1 geB(H
q= (W(N)J) q=(m (2)73)
q<7*(j) QSW_I(j)

)71)%.)2% term with <vaﬁ(t),vaj>2‘

which upper bounds Eq. (f]). Now note for 2 <t < N that for any nonnegative integer 8; and for
{g€ B(H):q=(n(t),j),t <7 1(j)} non-empty (note the strict inequality ¢t < 7~1(j)),

n

Z valﬂw”%t' H (v m),MU%> = Z H W(t)’MqUaj>2 (7)

A (1)=1 q€B(H) ar@)=1 qeB(H
q=(7(t).4) q=(n(t )J)

e 1() 1<n1(j)

H Z (Var(ry» M. qVa;)?

q€B(H) \ax)=1
q=(m(¢),7)
t<7r_1(j)

IN

n

* *
= 11 D VaMvan e, Mava,

= H (Mgva,)* (Zu, )M Vg
q€EB(H)
q=(m(t)J)

t<m—1(5)

= I My, l? (8)
q€B(H)
q=(m(1).)
t<m—1(5)

1T s %, 9)
q€EB(H)
q=(m(t),7)
t<m=1(4)

IN

where Eq. used Lemma [6] Eq. used Lemma [5] and Eq. (9) used that ||My| < 1. Now
consider processing the alternating sum-product in Eq. @ from right to left. We say that a bond
(i,4) € B(H) is assigned to i if 7=1(i) < 7~1(j). When arriving at the tth sum-product and using
the upper bound Eq. on the previous ¢ — 1 sum-products, we will have a sum over ||”a7r(t)H2
raised to some nonnegative power (specifically the number of bonds incident upon 7(¢) but not
assigned to m(t), plus one if 7(¢) has a self-loop) multiplied by a product of (vaﬂ(t>,v%>2 over all
bonds (7(t),j) assigned to 7(t). There are two cases. In the first case 7(¢) has no bonds assigned
to it. We will ignore this case since we will show that we can choose 7 to avoid it.

The other case is that m(¢) has at least one bond assigned to it. In this case we are in the
scenario of Eq. (8) and thus summing over a,) yields a non-empty product of ||v,; |? for the j for

12



which (7(t),7) is a bond assigned to 7(¢). Thus in our final sum, as long as we choose 7 to avoid
the first case, we are left with an upper bound of ||¢|| raised to some power equal to the edge-degree
of vertex 1 in H, which is at least 2. The lemma would then follow since ||c|’ < ||¢||? for j > 2.

It now remains to show that we can choose 7 to avoid the first case where some ¢t € {2,...,N}
is such that 7(¢) has no bonds assigned to it. Let 7" be a spanning tree in H rooted at vertex 1.
We then choose any 7 with the property that for any i < j, 7(7) is not an ancestor of m(j) in 7.
This can be achieved, for example, by assigning 7 values in reverse breadth first search order. W

Lemma 12. Let G be any dot product graph as in Eq. . Then

S T Ctaua)| < gt av et
ai,..,ay€[n] ec@
Vi aita; e=(i,5)

Proof. We first note that we have the inequality

Z H uai,ua]) = Z Z H <uai,ua] —Z Z uai,uaj)

ai,...,ay€[n] eEE(G) at,...,ay—1€[n]| ay=1 eEE(@) t=Lay=at ¢ é)
Viti aitaj e—(ij) Vi£jely—1] ai#a; e=(i,j) (m
n y—1
S DD DI | NN ED D D SRS SE |
at,...ay—1€[n]  ay=lecg(G) t=1] a1,..,ay-1€[n] ay=as GEE(G)
Vitjely—1] ai#a; e=(i,5) Vi#jely—1] aia; =(i,9)

We can view the sum over ¢ on the right hand side of the above as creating ¢t — 1 new dot product
multigraphs, each with one fewer vertex where we eliminated vertex y and associated it with vertex
t for some ¢, and for each edge (y,a) we effectively replaced it with (¢,a). Also in first sum where
we sum over all n values of a,, we have eliminated the constraints a, # a; for ¢ # y. By recursively
applying this inequality to each of the resulting ¢ summations, we bound

Z H (Ua; Uaj>

ay,...ay€[n] ec £(G)

ViAj aiFa; e=(i,5)
by a sum of contributions from y! dot product multigraphs where in none of these multigraphs
do we have the constraint that a; # a; for i # j. We will show that each one of these resulting
multigraphs contributes at most d?~**!, from which the lemma follows.

Let G’ be one of the dot product multigraphs at a leaf of the above recursion so that we now

wish to bound

P01 3T ) a
a1,....ay=1ecE(G")
6=(i,j)
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Figure 2: The formation of H; from H; .

where M, = I for all e for G’. Before proceeding, we first claim that every connected component
of G’ is Eulerian. To see this, observe G has an Eulerian tour, by following the edges of G in
increasing order of label, and thus all middle vertices have even edge-degree in G. However they
also have even edge-degree in M R(G), and thus the edge-degree of a middle vertex in LM (G) must
be even as well. Thus, every vertex in G has even edge-degree, and thus every vertex in each of
the recursively created leaf graphs also has even edge-degree since at every step when we eliminate
a vertex, some other vertex’s degree increases by the eliminated vertex’s degree which was even.
Thus every connected component of G’ is Eulerian as desired.

We now upper bound F(G’). Let the connected components of G’ be C1, ..., Ccc(ary, where
CC(+) counts connected components. An observation we repeatedly use later is that for any gen-
eralized dot product multigraph H with components C1, ..., Cocom),

F(H) = H F(Cy). (11)

We treat G’ as a generalized dot product multigraph so that each edge e has an associated matrix
M, (though in fact M, = I for all e). Define an undirected multigraph to be good if all its connected
components have two edge-disjoint spanning trees. We will show that F(G’) < F(G") for some
generalized dot product multigraph G” that is good then will show F(G”) < d¥=**1. If G itself is
good then we can set G” = G'. Otherwise, we will show F(G') = F(Hy) = ... = F(H;) for smaller
and smaller generalized dot product multigraphs H; (i.e. with successively fewer vertices) whilst
maintaining the invariant that each H; has Eulerian connected components and has ||[M.|| <1 for
all e. We stop when some H, is good and we can set G” = H,.

Let us now focus on constructing this sequence of H; in the case that G is not good. Let Hy = G.
Suppose we have constructed Hy, ..., H;_1 for i > 1 none of which are good, and now we want to
construct Hy. Since H;_; is not good it cannot be 4-edge-connected by Corollary [8] so there is some
connected component Cj« of Hy_1 with some cut S C V(Cj+) with 2 edges crossing the cut (S, 5),
where S represents the complement of S in Cj+. This is because since C}j« is Eulerian, any cut has
an even number of edges crossing it. Choose such an S C V(Cj+) with |S| minimum amongst all
such cuts. Let the two edges crossing the cut be (g, h), (¢',h') with g,¢’ € S (note that it may be
the case that g = ¢’ or h = A/, or both). Note that F(H;_1) equals the magnitude of

Z H (ual,Meuaj)Z H (Ua;, Meta,) uzy ZM<g,h)“ah H (Uay, Meta,) Uzh,M(h’,g’) Ua, -

{a;} e€Hy_1 {a;} | e€Hy_1 {a;} e€H; 1
igCix efCjs €S\ e=(i,j) i€s e=(i,9)
e=(i,5) i,j€S ,JES

M (12)
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Figure 3: Showing that ||M|| < 1 by AM-GM on two edge-disjoint spanning subgraphs.

[

In the above summations over {a;} we also have the constraints that a; # a; for i # j. We define
H; to be H;_1 but where in the j*th component we eliminate all the vertices and edges in S and add
an additional edge from g to ¢’ which we assign edge-matrix M (see Figure . We thus have that
F(H;_1) = F(H;). Furthermore each component of Hy is still Eulerian since every vertex in H;_;
has either been eliminated, or its edge-degree has been preserved and thus all edge-degrees are even.
By iteratively eliminating bad cuts S in this way, we eventually arrive at a generalized dot product
multigraph H. that has two edge-disjoint spanning trees in every component; this is because this
iterative process terminates, since every successive H; has at least one fewer vertex, and when the
number of vertices of any connected component drops to 2 or lower then that connected component
has two edge-disjoint spanning trees.

We first claim that Cj«(S) has two edge-disjoint spanning trees. Define C’ to be the graph

Cj+(S) with an edge from h to h' added. We show that C’(S) is 4-edge-connected so that Cj-(S)
has two edge-disjoint spanning trees by Corollary Now to see this, consider some S’ C S.
Consider the cut (S, V(C")\S’). €’ is Eulerian, so the number of edges crossing this cut is either
2 or at least 4. If it 2, then since |S’| < |S| this is a contradiction since S was chosen amongst such
cuts to have |S| minimum. Thus it is at least 4, and we claim that the number of edges crossing
the cut (S',5\S’) in C'(S) must also be at least 4. If not, then it is 2 since C’(S) is Eulerian.
However since the number of edges leaving S’ in C’ is at least 4, it must then be that h,h' € S’
But then the cut (S\S’,V(C’)\(S\S’)) has 2 edges crossing it so that S\S’ is a smaller cut than
S with 2 edges leaving it in C’, violating the minimality of |S|, a contradiction. Thus C’(S) is
4-edge-connected, implying Cj*(S’ ) has two edge-disjoint spanning trees 71, T, as desired.

Now to show ||M| <1, by Fact@we have || M|| = sup|y /=1 ¥ Ma'. We have (see Figure |3)

oMz = Z (z, Mg n)tay,) - H (Ua;, Metia;) | - (uah,,M(h/g/)a:/}
as€[n]lS e€E(C;x(9))
e=(4,5)
= Z <$7 M(g,h)uah> ’ H <uaiv Meuaj> ’ <uah/ ) M(h’,g’)x/> : H <uaia Meua]->
agen]d) eeT) c€B(Cye (S)\Th
e=(1,j) e=(4,7)
1
S 5 ' Z <ZC, M(g,h)u(lh>2 : H <ua¢) Meu(lj>2

ool B
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Figure 4: AM-GM on two edge-disjoint spanning subgraphs of one connected component of G”.

+ Z (ta,,» Mo gy2')? - H (g, Mo, )? (13)
as€ln]!S| e€E(Cyx (S)\T1
e=(ij)

(1 + ll"11%) (14)

| —

<

=N

I

where Eq. used the AM-GM inequality, and Eq. used Lemma (note the graph with ver-
tex set SU{¢'} and edge set E(Cj«(S))\T1U{(¢’, #')} is connected since To C E(C}«(S))\T1). Thus
we have shown that H; satisfies the desired properties. Now notice that the sequence Hy, ..., H1,...
must eventually terminate since the number of vertices is strictly decreasing in this sequence and
any Eulerian graph on 2 vertices is good. Therefore we have that H, is eventually good for some
7> 0 and we can set G = H.,.

It remains to show that for our final good G” we have F(G") < d¥~%*+1. We will show this in
two parts by showing that both CC(G") < d¥~**! and F(G") < d°“(E"). For the first claim, note
that CC(G") < CC(@) since every Hy has the same number of connected components as G/, and
ceGhy <cce ((A?) This latter inequality holds since in each level of recursion used to eventually
obtain G from G , we repeatedly identified two vertices as equal and merged them, which can only
decrease the number of connected components. Now, all middle vertices in G lie in one connected
component (since G is connected) and M R(G) has w connected components. Thus the at least
w — 1 edges connecting these components in G' must come from LM(G), implying that LM (G)
(and thus G) has at most y —w + 1 connected components, which thus must also be true for G” as
argued above.

It only remains to show F(G") < d°“(G"). Let G” have connected components C1, . . . , Ceoarm

with each C; having 2 edge-disjoint spanning trees le , T 27 (see Figure . We then have

lolel(edd!

F@" = [ F(

t=1

CC(G")

=10 > I (e Mews)

t=1 ai,..,a|y(cy)| =1 e€E(Ct)
6:(27])
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n

co@
= H Z H <uaia Meu&j> ’ H <uai’ Meuaj>
t=1

ai,..a|y(cy)| =1 eETf QGE(Ct)\Tf
e=(i.j) e=(i.J)
CC(G”)
S 11D SRD SIS | RURITAES SEND DI | QTR
t=1 ar1=laz,...a\v(cy)|=1 e€T} ar=laz,....a)v(cy)| =1 e E(C)\T}
e= (’Lj) e=(i,J)
(15)
CC(G’") n
< I X el (16)
a;=1
CC(G’”)
= II Wiz
t=1
elel(cl))

where Eq. used the AM-GM inequality, and Eq. used Lemma which applies since
V(Cy) with edge set T} is connected, and V(C;) with edge set E(C;)\T} is connected (since T4 C
E(C)\TY). u

Now, for any G € G we have y + z < b+ w since for any graph the number of edges plus the
number of connected components is at least the number of vertices. We also have b > 2z since
every right vertex of G is incident upon at least two distinct bonds (since i; # j; for all t). We also
have y < b < ¢ since M R(G) has exactly 2¢ edges with no isolated vertices, and every bond has
even multiplicity. Finally, a crude bound on the number of different G € G with a given b, y, z is
(z12)t Jylz! < (b%)¢/y!. This is because of the following reason. Label the y middle vertices 1,. ..,y
and the z right vertices 1,...,2. Let the vertices be numbered in increasing order, ordered by
the first time visited. When drawing the graph edges in increasing order of edge label, when at a
left vertex, we draw edges from the left to the middle, then to the right, then to the middle, and
then back to the left again, giving y?z choices. This is done £ times. We can divide by y!, z! since
counting graphs in this way overcounts each graph y!z! times, since the order in which we visit
vertices might not be consistent with their labelings. Thus by Lemma |12 and Eq. ,

E I < A . b z=b gy—w
tr((S — ))_dsebyzzjw Z yl- s m*t.d
b(@)= by(G) Yy
w(G)=w,z(G)=z

1 o db—z
<oz Sae 2 ()

b,y,z,w Geg
(G)=b,y(G)=y
(G)=w,z(G)==
1 d b—z
<d = b3£ L
Sd- 3 h%ﬂ} 5 <m>
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b
1 d
<d-— b3 —
caly (sx/m)

b’y?’z)w

b
B3\ d
< df* . max <> (63 ) (17)
2<b<l \ S m

Define € = 2¢ — 2. For £ > In(d¢*/5) = O(In(d/6)), s > el?/e = O(log(d/§)?/e), and m >
e2dl8 /€2 = O(dlog(d/5)%/e?), the above expression is at most de’. Thus by Eq. (T]),

P(IS—1|| > e < Gle Etr((S - 1)) <.

The proof of Theorem [10|reveals that for § = 1/poly(d) one could also set m = O(d'*7/e?) and
s = O4(1/¢) for any fixed constant v > 0 and arrive at the same conclusion. Indeed, let v' < v
be any positive constant. Let ¢ in the proof of Theorem [10| be taken as O(log(d/d)) = O(logd).
It suffices to ensure maxa<p<o(b%/5) 70 (b3\/d/m)® < %6 /(edt*) by Eq. (I7). Note A2 > 3 as
long as b/Inb > 6y~ '4/Ind = O(1/7'), so d’'? > b3 for b > b* for some b* = O(y~log(1/7)).
We choose s > e(b*)? /e and m = d'+7 /&2, which is at least d'+7'¢6 /e%for d larger than some fixed
constant. Thus the max above is always as small as desired, which can be seen by looking at b < b*
and b > b* separately (in the former case b3/s < 1/e, and in the latter case (b%/5)¢70- (b3 /d/m)® <
(/€)' b3d=7"b2 = (g /e)ledtmb=(1/2)7'bInd (¢ /) is as small as desired). This observation yields:

Theorem 13. Let a,vy > 0 be arbitrary constants. For I an OSNAP with s = O(1/¢) and
e € (0,1), with probability at least 1 —1/d%, all singular values of IIU are 1+¢ for m = Q(d' 77 /&2)
and o, h being Q(log d)-wise independent. The constants in the big-© and big-Q depend on o, .

Remark 14. Sectionstated the time to list all non-zeroes in a column in Theorem [10|is t. = O(s).
For 6 = 1/poly(d), naively one would actually achieve t. = O(s - logd) since one needs to evaluate
an O(log d)-wise independent hash function s times. This can be improved to O(s) using fast
multipoint evaluation of hash functions; see for example the last paragraph of Remark 16 of [27].

3 Applications

We use the fact that many matrix problems have the same time complexity as matrix multiplication
including computing the matrix inverse [8] |22, Appendix A], and QR decomposition [41]. In this
paper we only consider the real RAM model and state the running time in terms of the number of
field operations. The algorithms for solving linear systems, computing inverse, QR decomposition,
and approximating SVD based on fast matrix multiplication can be implemented with precision
comparable to that of conventional algorithms to achieve the same error bound (with a suitable
notion of approximation/stability). We refer readers to |16] for details. Notice that it is possible that
both algorithms based on fast matrix multiplication and conventional counterparts are unstable,
see e.g. [5] for an example of a pathological matrix with very high condition number.

In this section we describe some applications of our subspace embeddings to problems in nu-
merical linear algebra. All applications follow from a straightforward replacement of previously
used embeddings with our new ones as most proofs go through verbatim. In the statement of
our bounds we implicitly assume nnz(A) > n, since otherwise fully zero rows of A can be ignored
without affecting the problem solution.
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3.1 Approximate Leverage Scores

This section describes the application of our subspace embedding from Theorem [10] or Theorem
to approximating the leverage scores. Consider a matrix A of size n x d and rank r. Let U be a
n X r matrix whose columns form an orthonormal basis of the column space of A. The leverage
scores of A are the squared lengths of the rows of U. The algorithm for approximating the leverage
scores and the analysis are the same as those of [13], which itself uses essentially the same algorithm
outline as Algorithm 1 of [17]. The improved bound is stated below (cf. |13, Theorem 29]).

Theorem 15. For any constant € > 0, there is an algorithm that with probability at least 2/3,
approzimates all leverage scores of a n x d matriz A in time O(nnz(A)/e? 4+ r¥e=2%).

Proof. As in [13], this follows by replacing the Fast Johnson-Lindenstrauss embedding used
in [17] with our sparse subspace embeddings. The only difference is in the parameters of our
OSNAPs. We essentially repeat the argument verbatim just to illustrate where our new OSE
parameters fit in; nothing in this proof is new. Now, we first use [10] so that we can assume A
has only r = rank(A) columns and is of full column rank. Then, we take an OSNAP II with m =
O(r/e?),s = (polylogr)/e and compute ITA. We then find R~ so that IIAR™! has orthonormal
columns. The analysis of [17] shows that the £3 of the rows of AR™! are 1 + ¢ times the leverage
scores of A. Take II" € R™*! to be a JL matrix that preserves the 5 norms of the n rows of AR™!
up to 1 +¢. Finally, compute R~'TI’ then A(R~'II') and output the squared row norms of ARII'.

Now we bound the running time. The time to reduce A to having r linearly independent columns
is O((nnz(A) + r¥)logn). IIA can be computed in time O(nnz(A) - (polylogr)/e). Computing
R € R™" from the QR decomposition takes time O(m®) = O(r¥ /%), and then R can be inverted
in time O(r“’ ); note ITAR™! has orthonormal columns. Computing R~ column by column takes
time O(r?logr) using the FJLT of [4,32] with t = O(¢72logn(loglogn)*). We then multiply the
matrix A by the r x t matrix R~'II’, which takes time O(t - nnz(A)) = O(nnz(A)/e?). [

3.2 Least Squares Regression

In this section, we describe the application of our subspace embeddings to the problem of least
squares regression. Here given a matrix A of size n x d and a vector b € R™, the objective is to find
r € R? minimizing || Az — b||2. The reduction to subspace embedding is similar to those of [13}/40].
The proof is included for completeness.

Theorem 16. There is an algorithm for least squares regression running in time O(nnz(A) +
d3log(d/e)/e?) and succeeding with probability at least 2/3.

Proof. Applying Theorem [4] to the subspace spanned by columns of A and b, we get a distribution
over matrices II of size O(d?/?) x n such that II preserves lengths of vectors in the subspace up to
a factor 1+ ¢ with probability at least 5/6. Thus, we only need to find argmin, ||IIAz —IIb||2. Note
that ITA has size O(d?/e?) x d. By Theorem 12 of [40], there is an algorithm that with probability
at least 5/6, finds a 1 £ & approximate solution for least squares regression for the smaller input of
IIA and IIb and runs in time O(d3log(d/e)/<?). [

The following theorem follows from using the embedding of Theorem [10]and the same argument
as [13, Theorem 40].
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Theorem 17. Let r be the rank of A. There is an algorithm for least squares regression running in
time O(nnz(A)((log )M +log(n/e)) + ¢ (log r)°W) +r2log(1/e)) and succeeding with probability
at least 2/3.

3.3 {, Regression

Given a matrix A of size n x d and a vector b € R", the £, regression objective is to find z € R?
minimizing || Az —b||,, for some given p € [1,00). A black-box reduction from ¢, regression to OSE’s
was given by [11] using work of [14], and was later pointed out again in [13]. We now describe what
our work yields when combined with this reduction.

We first give the following definition from [14].

Definition 18. Let A € R™*? have rank r, and for p € [1,00) let ¢ be such that 1/qg + 1/p = 1.
Then U € R™" is an («, 8, p)-well-conditioned basis for A if (1) the columns of U and that of A

1/p
span the same space, (2) [|U]|,, of (Z” \U¢,j|p) satisfies [|U]|, < «, and (3) for all z € R" we

have ||z||q < ||[Uz||,. We say U is a p-well-conditioned basis if o, 5 are bounded by a polynomial in
r, independent of n, d.

Using [10] we can preprocess A in time O(nnz(A) + ) time to remove dependent columns,
so we assume that A has full column rank in what follows, i.e. ¥ = d. In order to compute an
optimal solution up to 1+ ¢, the work of [14] gave a sampling algorithm that, given an («, 3, p)-
well-conditioned basis U, produces two new /,, regression problems obtained by sampling rows of
A. Solving the first regression problem leads to an 8-approximation, which is refined by solving a
second regression problem that leads to a 1+¢ error guarantee. Specifically, one first picks sampling
probabilities for i € [n] with p; > min{1, (|U;|[p/[|U|[})-n1} where U; is the ith row of U. Then one

creates an n x n diagonal matrix D and sets D;; to be 1/ pi1 /P with probability p; and 0 otherwise
then solves the new ¢, regression problem of computing & = argmin, ||[DAx — Db||,. Here n; is
chosen to be O(2Pd(a3)?). Note that the new ¢, regression problem has expected size n; x d as
opposed to nx d, and thus can be solved more quickly if o, 8 are small. The vector p = AZ—bis then
used to define new sampling probabilities ¢; = min{1, max{p;, (|pi|?/||p|lb) - n2}}, which similarly
gives a new £, regression problem with an expected ny rows for ny = O(e7224Pd(a3)P log(1/¢)).
Let the optimal solution of this second problem be Z’. |14, Theorem 7] showed that ||Az" — b||, <
(1+¢) - min, || Az — b||, with probability 2/3 over all samplings.

The work [11] showed how to use OSE’s to speed up the computation of a p-well-conditioned
basis, to then implement the above scheme quickly. It follows from [11] (see also [13]) that if
one has an OSE distribution with success probability 1 — ¢ for § = 1/n (as opposed to 6 = 1/3
as in Definition , with ¢ = 1/2, and m rows and column sparsity s to preserve subspaces of
dimension d in R™ for n’ = max{1,n/d®}, then one can find a matrix U such that AU is a
(6, B, p)-well-conditioned basis for A in time O(nnz(A) - (s +logn) + d3logn). Here & = d'/P+1/2,
Bm = O(max{1,d"/9=1/2} . d(m?d®)!"/P=1/2). Furthermore it is discussed how one can use the
Johnson-Lindenstrauss lemma [24] to obtain an approximation to all £, norms of rows of AU up to
a factor of dI'/2=1/7l with probability 1—1/ poly(n) in time O((nnz(A)+d?)logn). This approximate
knowledge of the row ¢, norms leads to a factor dr1t/2=1/pl increase in n1,n9 above. One then obtains
the following theorem by combining everything stated thus far. This combined statement was also
noted in [13], but without explicitly stated dependence on m, s and other parameters; we make this
dependence explicit so that we can compare the consequences of using different OSE’s.
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Theorem 19 (follows from [11,14]). Suppose A € R"*? has rank d. Given an OSE distribution over
R™*™ with column sparsity s, with € = 1/2 and failure probability 6 < 1/n, one can find &' € R? in
time O(nnz(A)(s+logn)+d> log n+¢(O(20d"1P/2=1(4,,)P, d))+¢(O (e 224Pd (65, )P log(1/€)), d)
satisfying ||Az" — b||, < (1 + €) min, ||Az — b||, with probability 1/2. Here ¢(n,d) is the time to
exactly solve an n x d £, regression problem, and d,Bm are as above.

The work [13] plugged their OSE with m = O(d?logn + dlog?n) = d? polylogn and s = logn
into Theorem [19|above (recall 3,, depends on m?). On the other hand, one obtains improved depen-

dence on d by using our Theorem [10| with m = d polylogn, s = polylogn. If n,d are polynomially
related one can also use Theorem [13| with m = O(d' ), s = O,(1) for any v > 0.

3.4 Low Rank Approximation

In this section, we describe the application of our subspace embeddings to low rank approximation.
Here given a matrix A, one wants to find a rank k matrix Ay minimizing ||A — Ag||r. Let Ay be
the minimum [|A — Ag||F over all rank k matrices A;. We say a distribution D over R™*" has the
(e, 9, £)-moment property if for any x € R™ of unit ¢ norm,

Enp ||Tlz|? 1] < -0,

The following was stated in |26, Theorem 5.1] only for the case ¢ = log(1/6), but the proof given
there works essentially verbatim to provide the following statement.

Theorem 20. Fiz ¢, > 0. Suppose a distribution D over R™*™ satisfies the (g,0,£{)-moment
property for some £ > 2. Then for any matrices A, B with n rows,

Prp (|ATI'IB — AT B > 3¢/2|A||rl|B|l ) < 6 (18)

Any OSNAP with m = Q(1/(e%5)), s > 1 satisfies the (e, d, 2)-moment property by the analysis
in [43], and thus Theorem [20| is applicable. The reduction from rank-k approximation to OSE’s
in |13] required one additional property: the subspace embedding matrix also approximates matrix
multiplication in the sense of Theorem [20| with error O(y/e/k), which is satisfied by OSNAP with
m = Q(k/(g9)).

Therefore, the same algorithm and analysis as in [13] work. We state the improved bounds
using the embedding of Theorem 4| and Theorem (13| below (cf. [13, Theorem 44]).

Theorem 21. Given a matriz A of size n X n, there are 2 algorithms that, with probability at
least 3/5, find 3 matrices U, X,V where U is of size n X k, 3 is of size k X k, V is of size n X k,
UTU =VTV = I, ¥ is a diagonal matriz, and

|A - USV*||p < (1+¢)Ay

The first algorithm runs in time O(mnz(A))+0(nk?+nkv=le =94 kwe=2-%). The second algorithm
runs in time O(nnz(A)) + O(nk“ T 1e=170=7 4 fot7=27977) for any constant v > 0.

Proof. The proof is essentially the same as that of [13] so we only mention the difference. We use
2 bounds for the running time: multiplying an a x b matrix and a b X ¢ matrix with ¢ > a takes
O(a“~2bc) time (simply dividing the matrices into a x a blocks), and approximating SVD for an
a x b matrix M with a > b takes O(ab®~!) time (time to compute M7 M, approximate SVD of
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MTM = QDQT in O(b*) time [16], and compute MQ to complete the SVD of M). The running
time of [13] comes mainly from the following steps: (1) applying the subspace embedding for rank
k/e to A, (2) applying a sampled Hadamard matrix on a m X n matrix (m is the number of rows
of the subspace embedding matrix), (3) computing the SVD of a O(k/e%) x O(k/e) matrix, (4)
multiplying 2 matrices of sizes O(k/e) x O(k/e3) and O(k/e?) x n, and (5) computing the SVD of
a O(k/e) x n matrix, hence the terms in the stated running time. The only difference between the
two algorithms is that in the first algorithm, the subspace embedding has m = O(k?) and column
sparsity s = 1, while in the second algorithm, m = k't°) and s = O4(1). |
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