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Abstract

We explore the connection between dimensionality and communication cost in
distributed learning problems. Specifically we study the problem of estimating
the mean ~θ of an unknown d dimensional gaussian distribution in the distributed
setting. In this problem, the samples from the unknown distribution are distributed
among m different machines. The goal is to estimate the mean ~θ at the optimal
minimax rate while communicating as few bits as possible. We show that in this
setting, the communication cost scales linearly in the number of dimensions i.e.
one needs to deal with different dimensions individually. Applying this result to
previous lower bounds for one dimension in the interactive setting [1] and to our
improved bounds for the simultaneous setting, we prove new lower bounds of
Ω(md/ log(m)) and Ω(md) for the bits of communication needed to achieve the
minimax squared loss, in the interactive and simultaneous settings respectively.
To complement, we also demonstrate an interactive protocol achieving the mini-
max squared loss with O(md) bits of communication, which improves upon the
simple simultaneous protocol by a logarithmic factor. Given the strong lower
bounds in the general setting, we initiate the study of the distributed parameter
estimation problems with structured parameters. Specifically, when the param-
eter is promised to be s-sparse, we show a simple thresholding based protocol
that achieves the same squared loss while saving a d/s factor of communication.
We conjecture that the tradeoff between communication and squared loss demon-
strated by this protocol is essentially optimal up to logarithmic factor.

1 Introduction

The last decade has witnessed a tremendous growth in the amount of data involved in machine learn-
ing tasks. In many cases, data volume has outgrown the capacity of memory of a single machine and
it is increasingly common that learning tasks are performed in a distributed fashion on many ma-
chines. Communication has emerged as an important resource and sometimes the bottleneck of the
whole system. A lot of recent works are devoted to understand how to solve problems distributedly
with efficient communication [2, 3, 4, 1, 5].

In this paper, we study the relation between the dimensionality and the communication cost of sta-
tistical estimation problems. Most modern statistical problems are characterized by high dimension-
ality. Thus, it is natural to ask the following meta question:

How does the communication cost scale in the dimensionality?
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We study this question via the problems of estimating parameters of distributions in the distributed
setting. For these problems, we answer the question above by providing two complementary results:

1. Lower bound for general case: If the distribution is a product distribution over the coordi-
nates, then one essentially needs to estimate each dimension of the parameter individually
and the information cost (a proxy for communication cost) scales linearly in the number of
dimensions.

2. Upper bound for sparse case: If the true parameter is promised to have low sparsity, then a
very simple thresholding estimator gives better tradeoff between communication cost and
mean-square loss.

Before getting into the ideas behind these results, we first define the problem more formally. We con-
sider the case when there are m machines, each of which receives n i.i.d samples from an unknown
distribution P (from a family P) over the d-dimensional Euclidean space Rd. These machines need
to estimate a parameter θ of the distribution via communicating with each other. Each machine can
do arbitrary computation on its samples and messages it receives from other machines. We regard
communication (the number of bits communicated) as a resource, and therefore we not only want to
optimize over the estimation error of the parameters but also the tradeoff between the estimation er-
ror and communication cost of the whole procedure. For simplicity, here we are typically interested
in achieving the minimax error 1 while communicating as few bits as possible. Our main focus is
the high dimensional setting where d is very large.

Communication Lower Bound via Direct-Sum Theorem The key idea for the lower bound is,
when the unknown distribution P = P1 × · · · × Pd is a product distribution over Rd, and each
coordinate of the parameter θ only depends on the corresponding component of P , then we can
view the d-dimensional problem as d independent copies of one dimensional problem. We show
that, one unfortunately cannot do anything beyond this trivial decomposition, that is, treating each
dimension independently, and solving d different estimations problems individually. In other words,
the communication cost 2 must be at least d times the cost for one dimensional problem. We call
this theorem “direct-sum” theorem.

To demonstrate our theorem, we focus on the specific case where P is a d dimensional spherical
Gaussian distribution with an unknown mean and covariance σ2Id

3 . The problem is to estimate
the mean of P . The work [1] showed a lower bound on the communication cost for this problem
when d = 1. Our technique when applied to their theorem immediately yields a lower bound
equal to d times the lower bound for the one dimension problem for any choice of d. Note that [5]
independently achieve the same bound by refining the proof in [1].

In the simultaneous communication setting, where all machines send one message to one machine
and this machine needs to figure out the estimation, the work [1] showed that Ω(md/ logm) bits
of communication are needed to achieve the minimax squared loss. In this paper, we improve
this bound to Ω(md), by providing an improved lower bound for one-dimensional setting and then
applying our direct-sum theorem.

The direct-sum theorem that we prove heavily uses the idea and tools from the recent developments
in communication complexity and information complexity. There has been a lot of work on the
paradigm of studying communication complexity via the notion of information complexity [6, 7, 8,
9, 10]. Information complexity can be thought of as a proxy for communication complexity that is
especially accurate for solving multiple copies of the same problem simultaneously [8]. Proving so-
called “direct-sum” results has become a standard tool, namely the fact that the amount of resources
required for solving d copies of a problem (with different inputs) in parallel is equal to d times
the amount required for one copy. In other words, there is no saving from solving many copies of
the same problem in batch and the trivial solution of solving each of them separately is optimal.
Note that this generic statement is certainly NOT true for arbitrary type of tasks and arbitrary type
of resources. Actually even for distributed computing tasks, if the measure of resources is the

1by minimax error we mean the minimum possible error that can be achieved when there is no limit on the
communication

2technically, information cost, as discussed below
3where Id denote the d× d identity matrix
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communication cost instead of information cost, there exist examples where solving d copies of
a certain problem requires less communication than d times the communication required for one
copy [11]. Therefore, a direct-sum theorem, if true, could indeed capture the features and difficulties
of the problems.

Our result can be viewed as a direct sum theorem for communication complexity for statistical es-
timation problems: the amount of communication needed for solving an estimation problem in d
dimensions is at least d times the amount of information needed for the same problem in one di-
mension. The proof technique is directly inspired by the notion of conditional information complex-
ity [7], which was used to prove direct sum theorems and lower bounds for streaming algorithms.
We believe this is a fruitful connection and can lead to more lower bounds in statistical machine
learning.

To complement the above lower bounds, we also show an interactive protocol that uses a log factor
less communication than the simple protocol, under which each machine sends the sample mean and
the center takes the average as the estimation. Our protocol demonstrates additional power of inter-
active communication and potential complexity of proving lower bound for interactive protocols.

Thresholding Algorithm for Sparse Parameter Estimation In light of the strong lower bounds
in the general case, a question suggests itself as a way to get around the impossibility results:

Can we do better when the data (parameters) have more structure?

We study this questions by considering the sparsity structure on the parameter θ. Specifically, we
consider the case when the underlying parameter θ is promised to be s-sparse. We provide a simple
protocol that achieves the same squared-loss O(dσ2/(mn)) as in the general case, while using
Õ(sm) communications, or achieving optimal squared loss O(sσ2/(mn)), with communication
Õ(dm), or any tradeoff between these cases. We even conjecture that this is the best tradeoff up to
polylogarithmic factors.

2 Problem Setup, Notations and Preliminaries

Classical Statistical Parameter Estimation We start by reviewing the classical framework of statis-
tical parameter estimation problems. Let P be a family of distributions over X . Let θ : P → Θ ⊂ R
denote a function defined onP . We are given samplesX1, . . . , Xn from some P ∈ P , and are asked
to estimate θ(P ). Let θ̂ : Xn → Θ be such an estimator, and θ̂(X1, . . . , Xn) is the corresponding
estimate.

Define the squared loss R of the estimator to be

R(θ̂, θ) = Ê
θ,X

[
‖θ̂(X1, . . . , Xn)− θ(P )‖22

]
In the high-dimensional case, let Pd := {~P = P1 × · · · × Pd : Pi ∈ P} be the family of product
distributions over X d. Let ~θ : Pd → Θd ⊂ Rd be the d-dimensional function obtained by applying
θ point-wise ~θ (P1 × · · · × Pd) = (θ(P1), . . . , θ(Pd)).

Throughout this paper, we consider the case when X = R and P = {N (θ, σ2) : θ ∈ [−1, 1]} is
Gaussian distribution with for some fixed and known σ. Therefore, in the high-dimensional case,

Pd = {N (~θ , σ2Id) : ~θ ∈ [−1, 1]d} is a collection of spherical Gaussian distributions. We use ~̂θ to
denote the d-dimensional estimator. For clarity, in this paper, we always use~· to indicate a vector in
high dimensions.

Distributed Protocols and Parameter Estimation: In this paper, we are interested in the situation
where there are m machines and the jth machine receives n samples ~X(j,1), . . . , ~X(j,n) ∈ Rd from
the distribution ~P = N (~θ , σ2Id). The machines communicate via a publicly shown blackboard.
That is, when a machine writes a message on the blackboard, all other machines can see the content
of the message. Following [1], we usually refer to the blackboard as the fusion center or simply
center. Note that this model captures both point-to-point communication as well as broadcast com-
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munication. Therefore, our lower bounds in this model apply to both the message passing setting
and the broadcast setting. We will say that a protocol is simultaneous if each machine broadcasts
a single message based on its input independently of the other machine ([1] call such protocols
independent).

We denote the collection of all the messages written on the blackboard by Y . We will refer to Y as
transcript and note that Y ∈ {0, 1}∗ is written in bits and the communication cost is defined as the

length of Y , denoted by |Y |. In multi-machine setting, the estimator ~̂θ only sees the transcript Y , and

it maps Y to ~̂θ(Y ) 4, which is the estimation of ~θ . Let letter j be reserved for index of the machine
and k for the sample and letter i for the dimension. In other words, ~X(j,k)

i is the ith-coordinate of
kth sample of machine j. We will use ~Xi as a shorthand for the collection of the ith coordinate of
all the samples: ~Xi = { ~X(j,k)

i : j ∈ [m], k ∈ [n]}. Also note that [n] is a shorthand for {1, . . . , n}.

The mean-squared loss of the protocol Π with estimator ~̂θ is defined as

R
(

(Π, ~̂θ), ~θ
)

= sup
~θ

E
~X,Π

[‖~̂θ(Y )− ~θ ‖2]

and the communication cost of Π is defined as

CC(Π) = sup
~θ

E
~X,Π

[|Y |]

The main goal of this paper is to study the tradeoff between R
(

(Π, ~̂θ), ~θ
)

and CC(Π).

Proving Minimax Lower Bound: We follow the standard way to prove minimax lower bound.
We introduce a (product) distribution Vd of ~θ over the [−1, 1]d. Let’s define the mean-squared loss
with respect to distribution Vd as

RVd((Π, ~̂θ), ~θ ) = E
~θ∼Vd

[
E
~X,Π

[‖~̂θ(Y )− ~θ ‖2]

]

It is easy to see that RVd((Π, ~̂θ), ~θ ) ≤ R((Π, ~̂θ), ~θ ) for any distribution Vd. Therefore to prove
lower bound for the minimax rate, it suffices to prove the lower bound for the mean-squared loss
under any distribution Vd. 5

Private/Public Randomness: We allow the protocol to use both private and public randomness.
Private randomness, denoted by Rpriv, refers to the random bits that each machine draws by itself.
Public randomness, denoted by Rpub, is a sequence of random bits that is shared among all parties
before the protocol without being counted toward the total communication. Certainly allowing these
two types of randomness only makes our lower bound stronger, and public randomness is actually
only introduced for convenience.

Furthermore, we will see in the proof of Theorem 3.1, the benefit of allowing private randomness
is that we can hide information using private randomness when doing the reduction from one di-
mension protocol to d-dimensional one. The downside is that we require a stronger theorem (that
tolerates private randomness) for the one dimensional lower bound, which is not a problem in our
case since technique in [1] is general enough to handle private randomness.

Information cost: We define information cost IC(Π) of protocol Π as mutual information between
the data and the messages communicated conditioned on the mean ~θ . 6

4Therefore here ~̂θ maps {0, 1}∗ to Θ
5Standard minimax theorem says that actually the supVd RVd((Π, ~̂θ), ~θ ) = R((Π, ~̂θ), ~θ ) under certain

compactness condition for the space of ~θ .
6Note that here we have introduced a distribution for the choice of ~θ , and therefore ~θ is a random variable.
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ICVd(Π) = I( ~X;Y | ~θ ,Rpub)

Private randomness doesn’t explicitly appear in the definition of information cost but it affects it.
Note that the information cost is a lower bound on the communication cost:

ICVd(Π) = I( ~X;Y | ~θ ,Rpub) ≤ H(Y ) ≤ CC(Π)

The first inequality uses the fact that I(U ;V | W ) ≤ H(V | W ) ≤ H(V ) hold for any random
variable U, V,W , and the second inequality uses Shannon’s source coding theorem [13].

We will drop the subscript for the prior Vd of ~θ when it is clear from the context.

3 Main Results

3.1 High Dimensional Lower bound via Direct Sum

Our main theorem roughly states that if one can solves the d-dimensional problem, then one must
be able to solve the one dimensional problem with information cost and square loss reduced by a
factor of d. Therefore, a lower bound for one dimensional problem will imply a lower bound for
high dimensional problem, with information cost and square loss scaled up by a factor of d.

We first define our task formally, and then state the theorem that relates d-dimensional task with
one-dimensional task.

Definition 1. We say a protocol and estimator pair (Π, ~̂θ) solves task T (d,m, n, σ2,Vd) with infor-
mation cost C and mean-squared loss R, if for ~θ randomly chosen from Vd, m machines, each of
which takes n samples from N (~θ , σ2Id) as input, can run the protocol Π and get transcript Y so
that the followings are true:

RVd((Π, ~̂θ), ~θ ) = R (1)

IVd( ~X;Y | ~θ ,Rpub) = C (2)

Theorem 3.1. [Direct-Sum] If (Π, ~̂θ) solves the task T (d,m, n, σ2,Vd) with information cost C
and squared loss R, then there exists (Π′, θ̂) that solves the task T (1,m, n, σ2,V) with information
cost at most 4C/d and squared loss at most 4R/d. Furthermore, if the protocol Π is simultaneous,
then the protocol Π′ is also simultaneous.
Remark 1. Note that this theorem doesn’t prove directly that communication cost scales linearly
with the dimension, but only information cost. However for many natural problems, communication
cost and information cost are similar for one dimension (e.g. for gaussian mean estimation) and then
this direct sum theorem can be applied. In this sense it is very generic tool and is widely used in
communication complexity and streaming algorithms literature.

Corollary 3.1. Suppose (Π, ~̂θ) estimates the mean ofN (~θ , σ2Id), for all ~θ ∈ [−1, 1]d, with mean-
squared loss R, and communication cost B. Then

R ≥ Ω

(
min

{
d2σ2

nB logm
,

dσ2

n logm
, d

})
As a corollary, when σ2 ≤ mn, to achieve the mean-squared loss R = dσ2

mn , the communication cost

B is at least Ω
(

dm
logm

)
.

This lower bound is tight up to polylogarithmic factors. In most of the cases, roughlyB/mmachines

sending their sample mean to the fusion center and ~̂θ simply outputs the mean of the sample means
with O(logm) bits of precision will match the lower bound up to a multiplicative log2m factor. 7

7When σ is very large, when θ is known to be in [−1, 1], ~̂θ = 0 is a better estimator, that is essentially why
the lower bounds not only have the first term we desired but also the other two.
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3.2 Protocol for sparse estimation problem

In this section we consider the class of gaussian distributions with sparse mean: Ps =

{N (~θ , σ2Id) : | ~θ |0 ≤ s, ~θ ∈ Rd}. We provide a protocol that exploits the sparse structure of
~θ .

Inputs : Machine j gets samples X(j,1), . . . , X(j,n) distributed according to N (~θ , σ2Id), where
~θ ∈ Rd with | ~θ |0 ≤ s.

For each 1 ≤ j ≤ m′ = (Lm log d)/α, (where L is a sufficiently large constant), machine j sends
its sample mean X̄(j) = 1

n

(
X(j,1), . . . , X(j,n)

)
(with precision O(logm)) to the center.

Fusion center calculates the mean of the sample means X̄ = 1
m′

(
X̄(1) + · · ·+ X̄(m′)

)
.

Let ~̂θi =

{
X̄i if |X̄i|2 ≥ ασ2

mn
0 otherwise

Outputs ~̂θ
Protocol 1: Protocol for Ps

Theorem 3.2. For any P ∈ Ps, for any d/s ≥ α ≥ 1, Protocol 1 returns ~θ with mean-squared loss
O(αsσ

2

mn ) with communication cost O((dm logm log d)α).

The proof of the theorem is deferred to supplementary material. Note that when α = 1, we have
a protocol with Õ(dm) communication cost and mean-squared loss O(sσ2/(mn)), and when α =

d/s, the communication cost is Õ(sm) but squared loss O(dσ2/(mn)). Comparing to the case
where we don’t have sparse structure, basically we either replace the d factor in the communication
cost by the intrinsic dimension s or the d factor in the squared loss by s, but not both.

3.3 Improved upper bound

The lower bound provided in Section 3.1 is only tight up to polylogarithmic factor. To achieve the
centralized minimax rate σ2d

mn , the best existing upper bound of O(dm log(m)) bits of communica-
tion is achieved by the simple protocol that ask each machine to send its sample mean withO(log n)
bits precision . We improve the upper bound to O(dm) using the interactive protocols.

Recall that the class of unknown distributions of our model is Pd = {N (~θ , σ2Id) : θ ∈ [−1, 1]d}.
Theorem 3.3. Then there is an interactive protocol Π with communicationO(md) and an estimator
~̂θ based on Π which estimates ~θ up to a squared loss of O(dσ

2

mn ).

Remark 2. Our protocol is interactive but not simultaneous, and it is a very interesting question
whether the upper bound of O(dm) could be achieved by a simultaneous protocol.

3.4 Improved lower bound for simultaneous protocols

Although we are not able to prove Ω(dm) lower bound for achieve the centralized minimax rate in
the interactive model, the lower bound for simultaneous case can be improved to Ω(dm). Again, we
lowerbound the information cost for the one dimensional problem first, and applying the direct-sum
theorem in Section 3.1, we got the d-dimensional lower bound.

Theorem 3.4. Suppose simultaneous protocol (Π, ~̂θ) estimates the mean of N (~θ , σ2Id), for all
~θ ∈ [−1, 1]d, with mean-squared loss R, and communication cost B, Then

R ≥ Ω

(
min

{
d2σ2

nB
, d

})
As a corollary, when σ2 ≤ mn, to achieve mean-squared loss R = dσ2

mn , the communication cost B
is at least Ω(dm).
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4 Proof sketches

4.1 Proof sketch of theorem 3.1 and corollary 3.1

To prove a lower bound for the d dimensional problem using an existing lower bound for one dimen-
sional problem, we demonstrate a reduction that uses the (hypothetical) protocol Π for d dimensions
to construct a protocol for the one dimensional problem.

For each fixed coordinate i ∈ [d], we design a protocol Πi for the one-dimensional problem by
embedding the one-dimensional problem into the ith coordinate of the d-dimensional problem. We
will show essentially that if the machines first collectively choose randomly a coordinate i, and run
protocol Πi for the one-dimensional problem, then the information cost and mean-squared loss of
this protocol will be only 1/d factor of those of the d-dimensional problem. Therefore, the informa-
tion cost of the d-dimensional problem is at least d times the information cost of one-dimensional
problem.

Inputs : Machine j gets samplesX(j,1), . . . , X(j,n) distributed according toN (θ, σ2), where θ ∼ V .

1. All machines publicly sample θ̆−i distributed according to Vd−1.

2. Machine j privately samples X̆(j,1)
−i , . . . , X̆

(j,n)
−i distributed according to N (θ̆−i, σ

2Id−1).

Let X̆(j,k) = (X̆
(j,k)
1 , . . . , X̆

(j,k)
i−1 , X

(j,k), X̆
(j,k)
i+1 , . . . , X̆

(j,k)
d ).

3. All machines run protocol Π on data X̆ and get transcript Yi. The estimator θ̂i is θ̂i(Yi) =

~̂θ(Y )i i.e. the ith coordinate of the d-dimensional estimator.

Protocol 2: Πi

In more detail, under protocol Πi (described formally in Protocol 2) the machines prepare a d-
dimensional dataset as follows: First they fill the one-dimensional data that they got into the ith

coordinate of the d-dimensional data. Then the machines choose publicly randomly ~θ−i from distri-
bution Vd−1, and draw independently and privately gaussian random variables fromN (~θ−i , Id−1),
and fill the data into the other d − 1 coordinates. Then machines then simply run the d-dimension
protocol Π on this tailored dataset. Finally the estimator, denoted by θ̂i, outputs the ith coordinate

of the d-dimensional estimator ~̂θ.

We are interested in the mean-squared loss and information cost of the protocol Πi’s that we just
designed. The following lemmas relate Πi’s with the original protocol Π.

Lemma 1. Protocols Πi’s satisfy
∑d
i=1RV

(
(Πi, θ̂i), θ

)
= RVd

(
(Π, ~̂θ), ~θ

)
Lemma 2. Protocols Πi’s satisfy

∑d
i=1 ICV(Πi) ≤ ICVd(Π)

Note that the counterpart of Lemma 2 with communication cost won’t be true, and actually the
communication cost of each Πi is the same as that of Π. It turns out doing reduction in communi-
cation cost is much harder, and this is part of the reason why we use information cost as a proxy for
communication cost when proving lower bound. Also note that the correctness of Lemma 2 heavily
relies on the fact that Πi draws the redundant data privately independently (see Section 2 and the
proof for more discussion on private versus public randomness).

By Lemma 1 and Lemma 2 and a Markov argument, there exists an i ∈ {1, . . . , d} such that

R
(

(Πi, θ̂i), θ
)
≤ 4

d
·R
(

(Π, ~θ ), ~θ
)

and IC(Πi) ≤
4

d
· IC(Π)

Then the pair (Π′, θ̂) = (Πi, θ̂i) solves the task T (1,m, n, σ2,V) with information cost at most
4C/d and squared loss 4R/d, which proves Theorem 3.1.

Corollary 3.1 follows Theorem 3.1 and the following lower bound for one dimensional gaussian
mean estimation proved in [1]. We provide complete proofs in the supplementary.
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Theorem 4.1. [1] Let V be the uniform distribution over {±δ}, where δ2 ≤ min
(

1, σ
2 log(m)
n

)
.

If (Π, θ̂) solves the task T (1,m, n, σ2,V) with information cost C and squared loss R, then either

C ≥ Ω
(

σ2

δ2n log(m)

)
or R ≥ δ2/10.

4.2 Proof sketch of theorem 3.3

The protocol is described in protocol 3 in the supplementary. We only describe the d = 1 case,
while for general case we only need to run d protocols individually for each dimension.

The central idea is that we maintain an upper bound U and lower bound L for the target mean, and
iteratively ask the machines to send their sample means to shrink the interval [L,U ]. Initially we
only know that θ ∈ [−1, 1]. Therefore we set the upper bound U and lower bound L for θ to be
−1 and 1. In the first iteration the machines try to determine whether θ < 0 or ≥ 0. This is done
by letting several machines (precisely, O(logm)/σ2 machines) send whether their sample means
are < 0 or ≥ 0. If the majority of the samples are < 0, θ is likely to be < 0. However when θ
is very close to 0, one needs a lot of samples to determine this, but here we only ask O(logm)/σ2

machines to send their sample means. Therefore we should be more conservative and we only update
the interval in which θ might lie to [−1, 1/2] if the majority of samples are < 0.

We repeat this until the interval (L,U) become smaller than our target squared loss. Each round,
we ask a number of new machines sending 1 bits of information about whether their sample mean
is large than (U + L)/2. The number of machines participated is carefully set so that the failure
probability p is small. An interesting feature of the protocol is to choose the target error probabil-
ity p differently at each iteration so that we have a better balance between the failure probability
and communication cost. The complete the description of the protocol and proof are given in the
supplementary.

4.3 Proof sketch of theorem 3.4

We use a different prior on the meanN (0, δ2) instead of uniform over {−δ, δ} used by [1]. Gaussian
prior allows us to use a strong data processing inequality for jointly gaussian random variables by
[14]. Since we don’t have to truncate the gaussian, we don’t lose the factor of log(m) lost by [1].

Theorem 4.2. ([14], Theorem 7) Suppose X and V are jointly gaussian random variables with
correlation ρ. Let Y ↔ X ↔ V be a markov chain with I(Y ;X) ≤ R. Then I(Y ;V ) ≤ ρ2R.

Now suppose that each machine gets n samples X1, . . . , Xn ∼ N (V, σ2), where V is the prior
N (0, δ2) on the mean. By an application of theorem 4.2, we prove that if Y is a B-bit message
depending on X1, . . . , Xn, then Y has only nδ2

σ2 · B bits of information about V . Using some
standard information theory arguments, this converts into the statement that if Y is the transcript of
a simultaneous protocol with communication cost≤ B, then it has at most nδ

2

σ2 ·B bits of information
about V . Then a lower bound on the communication cost B of a simultaneous protocol estimating
the mean θ ∈ [−1, 1] follows from proving that such a protocol must have Ω(1) bit of information
about V . Complete proof is given in the supplementary.

5 Conclusion

We have lowerbounded the communication cost of estimating the mean of a d-dimensional spherical
gaussian random variables in a distributed fashion. We provided a generic tool called direct-sum for
relating the information cost of d-dimensional problem to one-dimensional problem, which might
be of potential use for other statistical problem than gaussian mean estimation as well.

We also initiated the study of distributed estimation of gaussian mean with sparse structure. We
provide a simple protocol that exploits the sparse structure and conjecture its tradeoff to be optimal:

Conjecture 1. If some protocol estimates the mean for any distribution P ∈ Ps with mean-squared
loss R and communication cost C, then C · R & sdσ2

mn , where we use & to hide log factors and
potential corner cases.
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A Communication Lower Bound via Direct-Sum Theorem: Proof of
Theorem 3.1

We restate the main theorem here for convenience

Theorem 3.1. [Direct-Sum] If (Π, ~̂θ) solves the task T (d,m, n, σ2,Vd) with information cost C
and squared loss R, then there exists (Π′, θ̂) that solves the task T (1,m, n, σ2,V) with information
cost at most 4C/d and squared loss at most 4R/d. Furthermore, if the protocol Π is simultaneous,
then the protocol Π′ is also simultaneous.

We consider the protocol Πi defined in Protocol 2. Lets denote the private and public randomness
of the protocol Πi as Rpriv and Rpub respectively. Note that in this section, θ is always a random
variable from distribution V and ~θ from Vd. We skip the subscripts V and Vd when it is clear from
the context.

Recall that we relate the information cost and mean-squared loss of Πi’s and Π by Lemma 1 and 2,
which are restated and proved below.

Lemma 1. Protocols Πi’s satisfy
∑d
i=1RV

(
(Πi, θ̂i), θ

)
= RVd

(
(Π, ~̂θ), ~θ

)
Lemma 2. Protocols Πi’s satisfy

∑d
i=1 ICV(Πi) ≤ ICVd(Π)

Proof of Lemma 1. The general idea is quite simple. By our design, the loss of each Πi is the loss of
Π restricted to the ith coordinate. The proof is an almost straightforward calculation that formalizes
this intuition.

First note that by definition of the square loss and θ̂i, we have

RV

(
(Πi, θ̂i), θ

)
= E[(θ̂i(Yi)− θ)2] = E[(~̂θ(Yi)i − θ)2]

where the expectation over all the randomness of the mean, the data, and the protocols. Observe that
under protocol Πi, the distribution (θ̆−i, θ) is Vd and therefore, the data X̆ that machines prepared
has the same distribution as ~X . It follows that the joint distribution of X,Yi, (θ, θ̆−i) is the same as
the distribution of ~Xi, Y, ~θ . Therefore,

E[(~̂θ(Yi)i − θ)2] = E[(~̂θ(Y )i − ~θ i)
2]] (3)

Then it follows the linearity of expectation that

d∑
i=1

R
(

(Πi, θ̂i), θ
)

=

d∑
i=1

E[(~̂θ(Yi)i − θ)2] =

d∑
i=1

E[(~̂θ(Y )i − ~θ i)
2]]

= E

[
d∑
i=1

(~̂θ(Y )i − ~θ i)
2

]
= E[‖~̂θ(Y )− ~θ ‖2] = RVd

(
(Π, ~̂θ), ~θ

)
where in the first line we used the definition and equation (3), the second line the linearity of expec-
tation, the final line the definition again.

Proof of Lemma 2. Recall under (Πi, θ̂i), machines prepare X̆ , which has the same distribution as
~X in the problem T (d,m, n, σ2,Vd). Also the joint distribution of ~Xi, Y, ~θ is the same as the
distribution of X,Yi, (θ, θ̆−i). Therefore, we have that

I( ~Xi;Y | ~θ ) = I(X;Yi | θ, θ̆−i) (4)

10



By definition, IC(Πi) = I(X;Yi | θ,Rpub), where Rpub is θ̆−i because each machine publicly
draws θ̆−i from Vd−1. Therefore, IC(Πi) = I(X;Yi | θ, θ̆−i), and taking the sum over all i, and
use equation (4)

d∑
i=1

IC(Πi) =

d∑
i=1

I(X;Yi | θ, θ̆−i)

=

d∑
i=1

I( ~Xi;Y | ~θ )

Note that the distribution of ~X conditioned on ~θ is a spherical gaussian N (~θ , σ2Id), and recall
that ~Xi is a shorthand for the collection of ith coordinates of all the samples: ~Xi = { ~X(j,k)

i : j ∈
[m], k ∈ [n]}. Therefore, ~X1, . . . , ~Xd are independent conditioned on ~θ . Hence,

d∑
i=1

I( ~Xi;Y | ~θ ) ≤ I( ~X;Y | ~θ ) = IC(Π)

where the inequality follows Proposition E.1, a basic property of conditional mutual information.

Remark 3. The role of private randomness can be crucially seen here. It is very important for the
machines to privately get samples in coordinates other than i for the information cost to go down by
a factor of d.

Proof of Theorem 3.1. By Lemma 1 and Lemma 2 and a Markov argument, there exists an i ∈
{1, . . . , d} such that

R
(

(Πi, θ̂i), θ
)
≤ 4

d
·R
(

(Π, ~θ ), ~θ
)

and
IC(Πi) ≤

4

d
· IC(Π)

Then the pair (Π′, θ̂) = (Πi, θ̂i) solves the task T (1,m, n, σ2,V) with information cost at most
4C/d and squared loss 4R/d.

We are going to apply the theorem above to the one-dimensional lower bound by [1]. Theorem A.1
below, though not explicitly stated, is implicit in the proof of Theorem 1 of [1]. Furthermore,
their techniques are general enough to prove lower bounds on the information cost for protocols
with private randomness, though they didn’t mention this explicitly. Also in [1], the definition of
information cost is a bit different. They do not condition on the prior of θ, but since in the one
dimensional case, this prior is just over {±δ}, conditioning on it can reduce the mutual information
by at most 1 bit.

I(X;Y | θ,Rpub) ≥ I(X;Y |Rpub)−H(θ) ≥ I(X;Y |Rpub)− 1

Theorem A.1. [1] Let V be the uniform distribution over {±δ}, where δ2 ≤ min
(

1, σ
2 log(m)
n

)
.

If (Π, θ̂) solves the task T (1,m, n, σ2,V) with information cost C and squared loss R, then either

C ≥ Ω
(

σ2

δ2n log(m)

)
or R ≥ δ2/10.

The corollary below directly follows from Theorem A.1 and Theorem 3.1.

Corollary A.1. Let V be the uniform distribution over {±δ}, where δ2 ≤ min
(

1, σ
2 logm
n

)
. If

(Π, θ̂) solves the task T (1,m, n, σ2,Vd) with information cost C and squared loss R, then either

C ≥ Ω
(

dσ2

δ2n logm

)
or R ≥ dδ2/40.
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Then noting that the communication cost is always larger than information cost, we can simply
convert Corollary A.1 into lower bound for communication cost, Corollary 3.1, restated below for
convenience.

Corollary 3.1. Suppose (Π, ~̂θ) estimates the mean ofN (~θ , σ2Id), for all ~θ ∈ [−1, 1]d, with mean-
squared loss R, and communication cost B. Then

R ≥ Ω

(
min

{
d2σ2

nB logm
,

dσ2

n logm
, d

})

As a corollary, when σ2 ≤ mn, to achieve the mean-squared loss R = dσ2

mn , the communication cost

B is at least Ω
(

dm
logm

)
.

Proof. Denote information cost of (Π, ~̂θ) by C, and we have the trivial inequality C ≤ B. The
rest of proof concerns only about how to choose the right prior δ and to convert the bounds on C
and R in Corollary A.1 into a single nice formula here. In the most typical case, if we choose
δ2 = Ω( dσ2

nB logn ), it follows Corollary A.1 that

R ≥ dδ2/40 ≥ Ω

(
d2σ2

nB logm

)
which captures the first term on the right hand side that we desired.

However, there are several corner cases that require additional treatment. Formally, we divide into
two cases depending on whether B ≥ 1

c ·max
(

dσ2

n logm ,
d

log2 m

)
or not, where c > 1 is a constant to

be specified later.

If B ≥ 1
c ·max

(
dσ2

n logm ,
d

log2 m

)
, choose δ2 = 1

c ·
dσ2

nB logm . We can check δ2 ≤ min
(

1, σ
2 logm
n

)
,

therefore we are ready to apply Corollary A.1. By the definition of δ, we can check C ≤ B =
1
c ·

dσ2

δ2n logm . Choose c large enough such that this violates the lower bound C = Ω( dσ2

δ2n logm ) in
Corollary A.1. Therefore, the other possible outcome of Corollary A.1 must be true, that is,

R ≥ dδ2/40 ≥ Ω

(
d2σ2

nB logm

)
.

On the other hand, if B ≤ 1
c ·max

(
dσ2

n logm ,
d

log2 m

)
, choose δ2 = dσ2

nmax
(

dσ2

n logm ,
d

log2 m

)
logm

. Again

δ2 ≤ min
(

1, σ
2 logm
n

)
and by the definition of δ,

C ≤ B ≤ 1

c
·max

(
dσ2

n logm
,

d

log2m

)
=

1

c
· dσ2

δ2n logm

Hence R ≥ dδ2/40 ≥ Ω
(

min
{

dσ2

n logm , d
})

.

Combining the two cases, we get

R ≥ Ω

(
min

{
d2σ2

nB logm
,

dσ2

n logm
, d

})

B Proof of Theorem 3.2

Let S = supp(~θ ). By sparsity of ~θ , we have |S| ≤ s. For each i 6∈ S,

E[(~̂θi − ~θ i)
2] = E[~̂θ2

i ] = Pr[|X̄i|2 > ασ2/(mn)]E[X̄2
i | |X̄i|2 > ασ2/(mn)] < o(1/d2) · ασ

2

mn
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The last inequality follows the fact that the distribution of X̄i is N (0, ασ2

mnL log d ).

For any i ∈ S, we know that ~̂θi ∈ {X̄i, 0}, therefore,

E[(~̂θi − ~θ i)
2] ≤ E[(X̄i − ~θ i)

2 | ~̂θi = X̄i] Pr[~̂θi = X̄i] + ~θ
2

i Pr[~̂θi = 0]

The first term in RHS can be bounded by

E[(X̄i − ~θ i)
2 | ~̂θi = X̄i] Pr[~̂θi = X̄i] ≤ E[(X̄i − ~θ i)

2] ≤ ασ2

mn

For the second term, assuming wlog ~θ i > 0, it is equal to ~θ
2

i Φ(

(
~θ i −

√
ασ2

mn

)
·
√

Lmn log d
ασ2 ),

which is upper bounded by O(ασ
2

mn ) when L is sufficiently large constant.

Therefore, when i ∈ S, we have that E[(~̂θi − ~θ i)
2] ≤ O(ασ

2

mn ). Putting all dimensions together,

E[||~̂θ − ~θ ||2] =
∑
i∈S

E[(~̂θi − ~θ i)
2] +

∑
i 6∈S

E[(~̂θi − ~θ i)
2] ≤ O

(
αsσ2

mn

)
Finally, the communication cost is clearly O((dm logm log d)/α) since totally O((m log d)/α) d-
dimensional vectors have been communicated.

C Improved upper bound: proof of theorem 3.3

Inputs : Machine j gets samples X(j,1), . . . , X(j,n) distributed according to N (θ, σ2), where θ ∈
[−1, 1].

Each machine calculates its sample mean X̄(j) = (X(j,1) + · · ·+X(j,n))/n
The fusion center maintains global variables L, U , `, p and broadcasts them if they are updated.
Initially, U ← 1, L← −1, `← 0, p = 0.1m−3/2

While U − L ≥ 1/
√
m

• a← (U + L)/2

• Each machine j ∈ {` + 1, ` + 1, . . . , ` + 50 log(2/p)
σ2(U−L)2 } sends whether mj = 1 if X̄(j) ≥ a

otherwise 0.
• If the majority of mj for j ∈ {`+ 1, `+ 1, . . . , `+ 50 log(2/p)

σ2(U−L)2 } is 1, then L← (L+ a)/2.
Otherwise U ← (U + a)/2.

• `← `+ 50 log(1/p)
σ2(U−L)2 , p = p ·

(
4
3

)3
.

end

Output L
Protocol 3: Improved Interactive Protocol for One-dimensional Gaussian Mean Estimation

For simplicity, and without loss of generality, we only prove the case when n = 1 and σ = 1. In
this case, each machine gets one sample from N (θ, 1). Our goal is to prove that Protocol 3 has
communication cost O(m) and mean-squared loss O(1/m)

Before going into the proof, we provide some justification for making the error probability of each
round exponentially decreasing. Intuitively, when the interval [L,U ] is small, we may allow slightly
larger failure probability since even we fail, the squared loss caused won’t be large given [L,U ]
is small. It turns out the right tradeoff is to increase the error probabilities exponentially as the
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approximation of θ gets better for two reasons: 1) the squared loss is affected more if the protocol
fails early when the estimate is still coarse so we want the failure probability in the early iteration to
be very small 2) the number of samples needed for the coarse approximation is small so it is cheaper
to decrease the failure probability of the early iterations than that of the late iterations.

Let Φ(x) be the c.d.f for normal distribution N (0, 1). We will need the following simple lemma
Φ(x) which is essentially the fact that the p.d.f of normal distribution is close to a constant around
0. We delay the proof of the lemma to the end of the section.
Lemma 3. For 0 ≤ t ≤ 1, we have Φ(t) ≥ 1/2 + t/4.

Note that initially U −L = 2 and in each iteration, U −L decreases by a factor of 3/4, therefore the
number of iterations is at most T = log4/3(2

√
m). Let U0 = 1, L0 = −1 and Us, Ls be the value

of U and L after s iterations, and let ts = Us − Ls. Also denote the value of p after s iterations as
ps. Therefore, by the definition of the protocol, ts = 2 · (3/4)s and ps = (4/3)3s · 0.1m−3/2.

We thought ps a the failure probability we would like to tolerate for iteration s. We make this formal
by defining Es be the indicator variable for the event that θ ∈ [Ls, Us], that is, the event that the
protocol outputs a valid interval that contains θ after s iteration. We claim that
Claim 1. Pr[Es+1 = 0|Es = 1] ≤ ps

Proof Of claim 1. Assuming Es happens, we know that θ ∈ [Ls, Us]. If Es+1 doesn’t happen,
then there must be two cases: a) θ ∈ [Ls, (3Ls + Us)/4], and the majority of the mj’s at that
iteration is 1. b) θ ∈ [(Ls + 3Us)/4, Us], and the majority of the mj’s at that iteration is 0. These
two cases are symmetric and we only analyze the first one. Under case a), the probability that a
single gussian sample from N (θ, 1) is less than a = (Us + Ls)/2 is 1 − Φ(ts/4) ≤ 1/2 − ts/20.
Therefore by chernoff bound, probability that majority of t independent samples from N (θ, 1) are
greater than (Ls + Us)/2 is ≤ e−t·t

2
s/50. In the protocol, we have t = 50t2s · log(2/ps) and hence

e−t·t
2
s/50 ≤ ps/2.

Then let’s calculate the mean-squared loss and the communication cost. For squared loss, let s be
the smallest s such that Es+1 = 0. In this case, the squared loss is at most t2s since we know
θ ∈ [Ls, Us] and the final output will also be in this interval. Note that Pr[Es = 1, Es+1 = 0] ≤
Pr[Es+1 = 0 | Es = 1] ≤ ps by Claim 1, therefore the expected square loss is at most

total squared loss ≤
T∑
s=0

qst
2
s =

T∑
s=0

(
4

3

)3s

· 1/10m3/2 · 4 ·
(

3

4

)2s

=
4

10m3/2
·
T∑
s=0

(
4

3

)s
= O(1/m)

The total communication is simply

50 ·
T∑
s=0

t2s · log(1/qs) = O

(
T∑
s=0

(
4

3

)2s

· log

((
3

4

)3s

· 10m3/2

))

= O

(
T∑
s=0

(
4

3

)2s

· log

(
10/8 ·

(
4

3

)T−s))

= O

(
T∑
s=0

(
4

3

)T−s
· log

(
10/8 ·

(
4

3

)s))
= O(m)

The third equality is just a change of variable. The fourth equality follows from the fact that∑∞
s=0

(
3
4

)s · s = O(1). Note that we have used O(m) samples whereas we have only m ma-
chines, but we can just increase m by a constant factor, thereby incurring another constant factor in
the expected square loss.
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Proof of Lemma 3.

1√
2π

∫ t

−∞
e−x

2/2 dx =
1√
2π

∫ 0

−∞
e−x

2/2 dx+
1√
2π

∫ t

0

e−x
2/2 dx

= 1/2 +
1√
2π

∫ t

0

e−x
2/2 dx

≥ 1/2 +
1√
2π

∫ t

0

(1− x2/2) dx

= 1/2 +
1√
2π

(
t− t3/6

)
≥ 1/2 + t/4

D Improved lower bound: Proof of theorem 3.4

We will need the following theorem from [14].

Theorem D.1. ([14], Theorem 7) Suppose X and V are jointly gaussian random variables with
correlation ρ. Let Y ↔ X ↔ V be a markov chain with I(Y ;X) ≤ R. Then I(Y ;V ) ≤ ρ2R.

We prove a slight generalization of the above theorem which we’ll need for our lower bound.

Lemma 4. Suppose V ∼ N (0, δ2). Let Z1, . . . , Zn be iid gaussians with mean 0 and variance σ2,
and Xi = V + Zi. If Y ↔ X1, . . . , Xn ↔ V is a markov chain s.t. I(Y ;X1, . . . , Xn) ≤ R, then
I(Y ;V ) ≤ nδ2

σ2+nδ2R.

Proof. Consider the density of v conditioned on x1, . . . , xn. Let x̄ =
∑n
i=1 x

i.

p(v|x1, . . . , xn) =
e−v

2/2δ2 · e−
∑n
i=1(xi−v)2/2σ2∫∞

−∞e
−v2/2δ2 · e−

∑n
i=1(xi−v)2/2σ2

dv

=
e−v

2/2δ2 · ex̄v/σ2−nv2/2σ2∫∞
−∞e

−v2/2δ2 · ex̄v/σ2−nv2/2σ2 dv

=
e−v

2/2δ2 · ex̄v/σ2−nv2/2σ2

e
x̄2δ2

2σ2(σ2+nδ2) ·
∫∞
−∞e

−(v− x̄δ2

σ2+nδ2
)/2 δ2σ2

σ2+nδ2 dv

=
e
−(v− x̄δ2

σ2+nδ2
)/2 δ2σ2

σ2+nδ2∫∞
−∞e

−(v− x̄δ2

σ2+nδ2
)/2 δ2σ2

σ2+nδ2 dv

Thus the distribution of v|x1, . . . , xn is N ( x̄δ2

σ2+nδ2 ,
δ2σ2

σ2+nδ2 ), and hence also the distribution of v|x̄
is N ( x̄δ2

σ2+nδ2 ,
δ2σ2

σ2+nδ2 ). Moreover, the distribution of x̄ is N (0, n(σ2 + nδ2)) and hence of x̄δ2

σ2+nδ2

is N (0, nδ4

σ2+nδ2 ). Hence V and (
∑n
i=1 X

i)δ2

σ2+nδ2 are jointly gaussian random variables with correlation

ρ =
√
nδ2√

σ2+nδ2
. Also Y ↔ X1, . . . , Xn ↔ (

∑n
i=1 X

i)δ2

σ2+nδ2 ↔ V is a markov chain. Data processing

implies that I(Y ;
(
∑n
i=1 X

i)δ2

σ2+nδ2 ) ≤ I(Y ;X1, . . . , Xn) ≤ R. Hence applying theorem D.1, we get

that I(Y ;V ) ≤ nδ2

σ2+nδ2R.

An easy corollary is the following:

Corollary D.1. Suppose V ∼ N (0, δ2). Let Z1, . . . , Zn be iid gaussians with mean 0 and variance
σ2, and Xi = V + Zi. If Y ↔ X1, . . . , Xn ↔ V is a markov chain, then I(Y ;V ) ≤ nδ2

σ2 ·
I(Y ;X1, . . . , Xn|V ).
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Proof. Since Y ↔ X1, . . . , Xn ↔ V is a markov chain, I(Y ;X1, . . . , Xn|V ) =

I(Y ;X1, . . . , Xn) − I(Y ;V ). Since by lemma 4, I(Y ;X1, . . . , Xn) ≥ σ2+nδ2

nδ2 · I(Y ;V ), we
get I(Y ;X1, . . . , Xn|V ) ≥ σ2

nδ2 I(Y ;V ), or I(Y ;V ) ≤ nδ2

σ2 · I(Y ;X1, . . . , Xn|V ).

This leads to the following lemma:

Lemma 5. If Π is a simultaneous protocol for m machines, where machine i gets n samples
X(i,1), . . . , X(i,n) ∼ N (V, σ2), where V ∼ N (0, δ2). Then the information cost of the protocol Π,
I satisfies I(Y ;V ) ≤ nδ2

σ2 · I , where Y is the transcript of the protocol Π.

Proof. Since Π is a simultaneous protocol, machine i sends a message Y i based on
X(i,1), . . . , X(i,n). Suppose Xi denote X(i,1), . . . , X(i,n). Then by corollary D.1, we
have that I(Y i;V ) ≤ nδ2

σ2 · I(Y i;Xi|V ). The information cost of the protocol Π is
I(Y 1, . . . , Y n;X1, . . . , Xn|V ). Note that (Y 1, X1), . . . , (Y n, Xn) are independent conditioned
on V . This gives us:

I = I(Y 1, . . . , Y n;X1, . . . , Xn|V )

=

n∑
i=1

I(Y i;Xi|V )

≥ σ2

nδ2
·
n∑
i=1

I(Y i;V )

To complete the proof of the lemma, we need to prove that
∑n
i=1 I(Y i;V ) ≥ I(Y ;V ), which

follows from proposition E.1.

Now we have the tools to prove theorem D.2 about improved lower bound for gaussian mean esti-
mation for simultaneous protocols.

Theorem D.2. Suppose (Π, θ̂) estimates the mean of N (θ, σ2), for all θ ∈ [−1, 1], with mean-
squared loss R, and communication cost B, where Π is a simultaneous protocol. Then

R ≥ Ω

(
min

{
σ2

nB
, 1

})
As a corollary, to achieve the optimal mean-squared loss R = σ2

mn , the communication cost B is at
least Ω(m).

Proof. We can assume R ≤ 1/100, otherwise we are done. Consider a simulation of the protocol
Π where the mean θ is generated according to the distribution N (0, δ2), where δ will be chosen
appropriately. We’ll denote by V , the random variable for the mean. If Y denotes the transcript
of the protocol, then by lemma 5, we have I(Y ;V ) ≤ nδ2

σ2 · B (since information cost is upper
bounded by communication cost). Let S be the sign of V . Also let δ2 = 10R. Then since square
loss of the estimator θ̂(Y ) is R, using Y , one can predict S w.p. 1/2 + Ω(1) (with the predictor
sign(θ̂(Y ))). Hence I(Y ;S) ≥ Ω(1) (e.g. by Fano’s inequality), which implies I(Y ;V ) ≥ Ω(1)

(by data processing). Hence nδ2

σ2 ·B ≥ Ω(1), which implies R ≥ Ω
(
σ2

nB

)
.

The proof of theorem 3.4 is an easy application of the direct sum theorem (theorem 3.1), lemma 5,
and arguments similar to the proof of theorem D.2, so we skip it.
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E Information Theory Inequalities

Proposition E.1. If random variables ~X1, . . . , ~Xd are independent conditioned on the random vari-
able ~θ , then for any random variable Y , we have,

d∑
i=1

I( ~Xi;Y | ~θ ) ≤ I( ~X1 . . . ~Xd;Y | ~θ )

Proof. We first use the chain rule for condition information and get

I( ~X;Y | ~θ ) =

d∑
i=1

I( ~Xi;Y | ~θ , ~X1, . . . , ~Xi−1)

=

d∑
i=1

(
H( ~Xi | ~θ , ~X1, . . . , ~Xi−1)−H( ~Xi | Y, ~θ , ~X1, . . . , ~Xi−1)

)

Then since ~X1, . . . , ~Xd are independent conditioned on ~θ , we have H( ~Xi | ~θ , ~X1, . . . , ~Xi−1 =

H( ~Xi | ~θ ), and then

I( ~X;Y | ~θ ) =

d∑
i=1

(
H( ~Xi | ~θ )−H( ~Xi | Y, ~θ , ~X1, . . . , ~Xi−1)

)
≥

d∑
i=1

(
H( ~Xi | ~θ )−H( ~Xi | Y, ~θ )

)
=

d∑
i=1

I( ~Xi;Y | ~θ )

where the inequality follows from the fact that conditioning decreases entropy.
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