
A New Framework for Distributed Submodular Maximization

Rafael da Ponte Barbosa∗ Alina Ene† Huy L. Nguyễn‡ Justin Ward§

August 11, 2016

Abstract

A wide variety of problems in machine learning, including exemplar clustering, document
summarization, and sensor placement, can be cast as constrained submodular maximization
problems. A lot of recent effort has been devoted to developing distributed algorithms for these
problems. However, these results suffer from high number of rounds, suboptimal approximation
ratios, or both. We develop a framework for bringing existing algorithms in the sequential setting
to the distributed setting, achieving near optimal approximation ratios for many settings in only
a constant number of MapReduce rounds. Our techniques also give a fast sequential algorithm
for non-monotone maximization subject to a matroid constraint.

1 Introduction
The general problem of maximizing a submodular function appears in a variety of contexts, both in
theory and practice. From a theoretical perspective, the class of submodular functions is extremely
rich, including examples as varied as cut functions of graphs and digraphs, the Shannon entropy
function, weighted coverage functions, and log-determinants. Recently, there has been a great deal
of interest in practical applications of submodular optimization, as well. Variants of facility loca-
tion, sampling, sensor selection, clustering, influence maximization in social networks, and welfare
maximization problems are all instances of submodular maximization. In practice, many of these
applications involve processing enormous datasets requiring efficient, distributed algorithms.

In contrast, most successful approaches for submodular maximization have been based on se-
quential greedy algorithms, including the standard greedy algorithm [24, 16], the continuous greedy
algorithm [9, 15], and the double greedy algorithm [7]. Indeed, such approaches attain the best-
possible, tight approximation guarantees in a variety of settings [14, 26, 13], but unfortunately they
all share a common limitation, inherited from the standard greedy algorithm: they are inherently
sequential. This presents a seemingly fundamental barrier to obtaining efficient, highly parallel
variants of these algorithms.

1.1 Our Contributions

As demonstrated by the extensive prior works on submodular maximization, the community has a
good understanding of the problem under remarkably general types of constraints, which are handled
by a small collection of general algorithms. In contrast, the existing works in the distributed setting
∗Department of Computer Science and DIMAP, University of Warwick. rafael@dcs.warwick.ac.uk.
†Department of Computer Science, Boston University. a.ene@bu.edu.
‡College of Computer and Information Science, Northeastern University. hlnguyen@cs.princeton.edu.
§School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland. justin.ward@epfl.ch.

1

are either tailored to special cases, giving approximation factors far from optimal or requiring a large
number of distributed rounds. One cannot help but wonder if, instead of retracing the individual
advances made in the sequential setting over the last few decades, it may be possible to obtain a
generic technique to carry over the algorithms in the sequential setting to the parallel world.

In this work, we present a significant step toward resolving the above question. Our main
contribution is a generic parallel algorithm that allows us to parallelize a broad class of sequential
algorithm with almost no loss in performance. The crux of our approach is a common abstraction
that allows us to capture and parallelize both the standard and continuous greedy algorithms, and
it provides a novel unifying perspective for these algorithmic paradigms. Our framework leads to
the first distributed algorithms that nearly match the state of the art approximation guarantees for
the sequential setting in only a constant number of rounds. In the following, we summarize our
main contributions.

A parallel greedy algorithm. We obtain the following general result by parallelizing the standard
greedy algorithm:

Theorem 5.2. Let f : 2V → R+ be a submodular function, and I ⊆ 2V be a hereditary set system1.
For any ε > 0 there is a randomized distributed O(1/ε)-round algorithm that can be implemented in
the MapReduce framework2. The algorithm is an (α−O(ε))-approximation with constant probability
for the problem maxS∈I f(S), where α is the approximation ratio of the standard, sequential greedy
algorithm for the same problem.

Our constant number of rounds is a significant improvement over the sample and prune technique
of [20], which requires a number of rounds depending logarithmically on the value of the single best
element. Remarkably, even for the especially simple case of a cardinality constraint, no previous
work could get close to the approximation ratio of the simple sequential greedy algorithm in a
constant number of rounds. Our framework nearly matches the approximation ratio of greedy in
all situations in a constant number of rounds and immediately resolves this problem.

A parallel continuous greedy algorithm. We obtain new distributed approximation results
for maximization over matroids, by using a heavily discretized variant of the measured continu-
ous greedy algorithm, obtaining approximation guarantees nearly matching those attained by the
continuous greedy in the sequential setting.

Theorem 6.3. Let f : 2V → R+ be a submodular function, and I ⊆ 2V be a matroid. For any ε > 0
there is a randomized distributed O(1/ε)-round algorithm that can be implemented in the MapReduce
framework. The algorithm is an (α−O(ε))-approximation with constant probability for the problem
maxS∈I f(S), where α is (1− 1/e) for monotone f and 1/e for general f .

Improved two-round algorithms and fast sequential algorithms. We also give improved two-
round approximations for non-monotone submodular maximization under hereditary constraints.
We make use of the same “strong greedy property” utilized in [12] but attain approximation guaran-
tees strictly better than were given there. Our algorithm is based on a combination of the standard
greedy algorithm Greedy and an additional, arbitrary algorithm Alg. Again, we suppose that f is
a (not necessarily monotone) submodular function and I is any hereditary constraint. In the fol-
lowing theorems and throughout the paper, n := |V | is the size of the ground set, k := maxS∈I |S|

1A set system is hereditary if for any S ∈ I, all subsets of S are also in I.
2We define the MapReduce model in Section 2.

2

Monotone functions

Constraint Rounds Approx. Citation

cardinality

O
(log ∆

ε

)
1− 1

e − ε [20]
2 0.545 [21]

O
(

1
ε

)
1− 1

e − ε Theorem 5.2

matroid

O
(log ∆

ε

)
1
2 − ε [20]

2 1
4 [12]

O
(

1
ε

)
1− 1

e − ε Theorem 6.3

p-system

O
(log ∆

ε

)
1
p+1 − ε [20]

2 1
2(p+1) [12]

O
(

1
ε

)
1
p+1 − ε Theorem 5.2

Non-monotone functions

Constraint Rounds Approx. Citation

cardinality
2 1− 1

m
2+e [21]

2 (1− 1
m)1

e (1− 1
e) Theorem D.1

matroid

2 1
10 [12]

2 1− 1
m

2+e Theorem 7.1

O
(

1
ε

)
1
e − ε Theorem 6.3

p-system
2 1

2+4(p+1) [12]

2 3(1− 1
m

)

5p+7+ 2
p

Theorem 7.1

Table 1: New results for distributed submodular maximization. Here ∆ = maxi∈V f({i}) and m
is the number of machines. In the results of [20], in the number of rounds, ∆ can be replaced by
the maximum size of a solution. All algorithms in previous works and ours are randomized and the
approximation guarantees stated hold in expectation, and they can be strengthened to hold with
high probability by repeating the algorithms in parallel.

is the maximum size of a solution, and m is the number of machines employed by the distributed
algorithm.

Theorem 7.1. Suppose that Greedy satisfies the strong greedy property with constant γ and that
Alg is a β-approximation for the problem maxS∈I f(S). Then there is a randomized, two-round
distributed algorithm that achieves a (1− 1

m) βγ
β+γ approximation in expectation for maxS∈I f(S).

We show that by simulating the machines in this last distributed algorithm, we also obtain
a fast, sequential algorithm for maximizing a non-monotone submodular function subject to a
matroid constraint. Our algorithm shows that one can preprocess the instance in O(nε log n) time
and obtain a set X of size O(k/ε) so that it suffices to solve the problem on X. By using a variant
of the continuous greedy algorithm on the resulting set X, we obtain the following result.

Theorem 7.2. There is a sequential, randomized (1
2+e−ε)-approximation algorithm for the problem

maxS∈I f(S), where I is any matroid constraint, running in time O(nε log n) + poly(kε).

As a final application of our techniques, we obtain a very simple two-round distributed algorithm
for monotone maximization subject to a cardinality constraint.

Theorem 7.3. There is a randomized, two-round, distributed algorithm achieving a 1
2 − ε approxi-

mation in expectation for maxS:|S|≤k f(S), where f is a monotone function.

1.2 Techniques

In contrast with the previous framework by [20] which is based on repeatedly eliminating bad
elements, our framework is more in line with the greedy approach of identifying good elements.
The algorithm maintains a pool of good elements that is grown over several rounds. In each round,

3

the elements are partitioned randomly into groups. Each group selects the best among its elements
and the good pool using the sequential algorithm. Finally, the best elements from all groups are
added to the good pool. The best solution among the ones found in the execution of the algorithm
is returned at the end. The previous works based on 2 rounds of MapReduce such as [12] can be
viewed as a single phase of our algorithm. The first phase can already identify a constant fraction
of the weight of the solution, thus obtaining a constant factor approximation. However, it is not
clear how to obtain the best approximation factor from such an approach. Our main insight is that,
with a right measure of progress, we can grow the solution iteratively and obtain solutions that are
arbitrarily close to those of sequential algorithms. We show that after only O(1

ε) rounds, the pool
of good elements already contains a good solution with constant probability.

1.3 Related Work

There has been a recent push toward obtaining fast, practical algorithms for submodular maxi-
mization problems arising in a variety of applied settings. Research in this direction has yielded
a variety of techniques for speeding up the continuous greedy algorithm for monotone maximiza-
tion [3, 22], as well as new approaches for non-monotone maximization based on insights from both
the continuous greedy and double greedy algorithms [6, 8]. Of particular relevance to our results
is the case of maximization under a matroid constraint. Here, for monotone functions the fastest
current sequential algorithm gives a 1 − 1/e − ε approximation using O(

√
kn
ε5

ln2(nε) + k2

ε) value
queries. For non-monotone functions, Buchbinder et al. [8] give an 1+e−2

4 > 0.283-approximation in
time O(kn log n+Mk), where M is the time required to compute a perfect matching on bipartite
graph with k vertices per side. They also give a simple, combinatorial 1/4-approximation in time
O(kn log n). In comparison, the sequential algorithm we present here is faster by a factor of Ω(k),
at the cost of a slightly-weaker 1

2+e > 0.211-approximation.
Work on parallel and distributed algorithms for submodular maximization has been compara-

tively limited. Early results considered the special case of maximum k-coverage, and attained an
O(1 − 1/e − ε)-approximation [11, 5]. Later, Kumar et al. [20] considered the more general prob-
lem of maximizing an arbitrary monotone submodular function subject to a matroid, knapsack,
or p-system constraint. Their approach attains a 1

2+ε approximation for matroids, and requires
O(1

ε log ∆) MapReduce rounds, where ∆ is the value of the best single element. More generally,
they obtain a 1

p+1+ε approximation for p-systems in O(1
ε log ∆) rounds. The factor of log ∆ in the

number of rounds is inherent in their approach: they adapt the threshold greedy algorithm, which
sequentially picks elements in log ∆ different thresholds. In another line of work, Mirzasoleiman
et al. [23] introduced a simple, two-round distributed greedy algorithm for submodular maximiza-
tion. While their algorithm is only an O(1

m)-approximation in the worst case, it performs very
well in practice, and attains provable constant-factor guarantees for submodular functions exhibit-
ing certain additional structure. Barbosa et al. [12] recently gave a more sophisticated analysis of
this approach and showed that, if the initial distribution of elements is performed randomly, the
algorithm indeed gives an expected, constant-factor guarantee for a variety of problems. Finally,
Mirrokni and Zadimoghaddam [21] gave the currently-best 0.545-approximation for the cardinality
constraint case using only 2 rounds of MapReduce.

2 The model
We adopt the most stringent MapReduce-style model among [19, 17, 4, 2], the Massively Parallel
Communication (MPC) model from [4] as specified by [2]. Let N be the size of the input. In this
model, there are M machines each with space S. The total memory of the system is M ·S = O(N),

4

which is at most a constant factor more than the input size. Computation proceeds in synchronous
rounds. In each round, each machine can perform local computation and at the end, it can send at
most a total of O(S) words to other machines. These O(S) words could form a single message of
size S, S messages of size 1, or any other combination whose sum is at most O(S). Following [19],
we restrict both M,S < N1−Ω(1). The typical main complexity measure is the number of rounds.

Note that not all previous works on MapReduce-style algorithms for submodular maximization
satisfy the strict requirements of the MPC model. For instance, as stated, the previous work by
Kumar et al. [20] uses Θ(N logN) total memory and thus it does not fit in this model (though it
might be possible to modify their algorithms to satisfy this).

We assume that the size of the solution is at most N1−2c for some constant 0 < c < 1/2. Thus,
an entire solution can be stored on a single machine in the model. This assumption is also used in
previous work such as [21].

3 Preliminaries

A function f : 2V → R+ is submodular if and only if f(A∪{e})− f(A) ≥ f(B ∪{e})− f(B) for all
A ⊆ B and e 6∈ B. If f(A ∪ {e})− f(A) ≥ 0 for all A and e 6∈ A we say that f is monotone. Here
we consider the general problem max{f(S) : S ⊆ V, S ∈ I}, where I is any hereditary constraint
(i.e., a downward-closed family of subsets of V).

Throughout the paper, n := |V | is the size of the ground set, k := maxS∈I |S| is the maximum
size of a solution, and m is the number of machines employed by the distributed algorithm.

We shall consider both monotone and non-monotone submodular functions. However, the fol-
lowing simple observation shows that even non-monotone submodular functions are monotone when
restricted to the optimal solution of a problem of the sort we consider.

Lemma 3.1. Let f be a submodular function and OPT = arg maxS∈I f(S) for some hereditary
constraint I. Then, f(A ∩OPT) ≤ f(B ∩OPT) for all A ⊆ B.

Proof: Consider X ⊆ OPT and e ∈ OPT \X. By submodularity, f(X ∪{e})− f(X) ≥ f(OPT)−
f(OPT\{e}). On the other hand, because I is hereditary, OPT\{e} is feasible and thus f(OPT) ≥
f(OPT \ {e}). Therefore f(X ∪ {e})− f(X) ≥ 0 for all X and e ∈ OPT \X. �

Continuous extensions. In this paper, we work with two standard continuous extensions of
submodular functions, the multilinear extension and the Lovász extension. Themultilinear extension
of f is the function F : [0, 1]V → R+ such that F (x) = E[f(R(x))], where R(x) is a random subset
of V in which each element e appears independently with probability xe.

The Lovász extension of f is the function f− : [0, 1]V → R+ such that f−(x) = Eθ∈U(0,1)[f({e :
xe ≥ θ})], where U(0, 1) is the uniform distribution on [0,1]. For any submodular function f , the
Lovász extension f− satisfies: f−(1S) = f(S) for all S ⊆ V ; f− is convex; and the restricted scale
invariance property f−(c · x) ≥ c · f−(x) for any c ∈ [0, 1]. We shall make use of the following
lemmas.

Lemma 3.2 ([12], Lemma 1). Let S be a random set with E[1S] = c · p (for c ∈ [0, 1]). Then,
E[f(S)] ≥ c · f−(p).

Lemma 3.3. Let f : 2V → R+ be a submodular function that is monotone when restricted to
X ⊆ V . Further, let T, S ⊆ X, and let R be a random subset of T in which every element occurs
with probability at least p. Then, E[f(R ∪ S)] ≥ p · f(T ∪ S) + (1− p)f(S).

5

Proof: Recall that f− is the Lovász extension of f . Since f− is convex,

E[f(R ∪ S)] = E[f−(1R∪S)] ≥ f−(E[1R∪S]) = f−(E[1R\S] + 1S).

Since every element of T occurs in R with probability at least p, we have E[1R\S] ≥ p ·1T\S . Then,
since f is monotone with respect to X ⊇ S ∪ T , we must have:

f−(E[1R\S] + 1S) ≥ f−(p · 1T\S + 1S).

Finally, from the definition of f−, we have

f−(p · 1T\S + 1S) = p · f(T ∪ S) + (1− p)f(S).

�

4 Generic Parallel Algorithm for Submodular Maximization
In this section, we give a generic approach for parallelizing any sequential algorithm Alg for the
problem maxS⊆V : S∈I f(S), where f : 2V → R+ is a submodular function and I ⊆ 2V is a hereditary
constraint.

As a starting point, we need a common abstract description of existing sequential algorithms. To-
wards that end, we turn to the standard Greedy and Continuous Greedy algorithms for inspiration.
The Greedy algorithm directly constructs a solution, whereas the Continuous Greedy algorithm first
constructs a fractional solution x which is then rounded to get an integral solution. In the common
abstraction, we will need both the integral solution and the support of the fractional solution x. To
account for this, we will have the algorithm Alg return a pair of sets, (AlgSol(V),AlgRel(V)), where
AlgSol(V) ∈ I is a feasible solution for the problem and AlgRel(V) is a set providing additional in-
formation. When using the standard Greedy algorithm for Alg, AlgSol(V) and AlgRel(V) will both
be equal to the Greedy solution. When using the Continuous Greedy algorithm for Alg, AlgSol(V)
will be the integral solution and AlgRel(V) will be the support of the fractional solution constructed
by the Continuous Greedy algorithm.

More importantly, we will need an abstraction that captures the greedy behavior of these algo-
rithms. We encapsulate the crucial properties of greedy-like algorithms in the following definition.
We believe that this framework is one of the most valuable and insightful contributions of this work,
and it provides a general abstraction for a broader class of algorithms.

We assume that the algorithm Alg satisfies the following properties.

1. (α-Approximation) For every input N ⊆ V , AlgSol(N) is an α-approximate solution to
maxS⊆N : S∈I f(S).

2. (Consistency) Let A and B be two disjoint subsets of V . Suppose that, for each element
e ∈ B, we have AlgRel(A ∪ {e}) = AlgRel(A). Then AlgSol(A ∪B) = AlgSol(A).

Armed with this definition, we can now describe our approach for parallelizing an abstract
sequential algorithm Alg with almost no loss in the approximation guarantee.

Parallel algorithm ParallelAlg based on Alg. As before, let α be the approximation guarantee
of the sequential algorithm Alg. Let s := maxN⊆V |AlgSol(N) ∪ AlgRel(N)| be the maximum size
of the sets returned by Alg. Let ε > 0 be the desired accuracy, i.e., we will aim that ParallelAlg
achieves an (α− ε) approximation.

6

The algorithm uses g := Θ(1/(αε)) groups of machines with m machines in each group (and thus
the total number of machines is gm). The number m of machines can be chosen arbitrarily and it
will determine the amount of space needed on each machine, since the dataset is divided roughly
equally among each of the m machines in each group. An optimal setting is gm := O(

√
n/s).

The algorithms performs Θ(1/ε) runs. Throughout the process, we maintain two quantities: an
incumbent solution Sbest, which is the best solution produced on any single machine so far in the
process, and a pool of elements C ⊆ V (we assume that the incumbent solution is stored on one
designated machine).

Each run of the algorithm proceeds as follows. Amongst each group of m machines, we partition
V uniformly at random; each element e chooses an index i ∈ [m] uniformly and independently at
random and is assigned to the ith machine in the group. We do this separately for each group
of machines, i.e., each element appears on exactly one machine in each group. For an individual
machine i ∈ [gm], letXi,r denote the set of elements that are assigned to i in run r by this procedure.
Additionally, we place on each machine the same pool of elements Cr−1, constructed at the end of
run r − 1.

Once the elements have been distributed as described above, on each machine i, we run the
algorithm Alg on the input Xi,r ∪Cr−1 on the machine to obtain (AlgSol(Xi,r ∪Cr−1),AlgRel(Xi,r ∪
Cr−1)). We update the incumbent solution Sbest to be the better of the current solution Sbest and
the solutions AlgSol(Xi,r∪Cr−1) constructed on each of the machines; this is achieved by having each
machine send AlgSol(Xi,r ∪Cr−1) to some designated machine maintaining Sbest, and this machine
will update Sbest in the next round. We update the pool by setting Cr := Cr−1

⋃
i AlgRel(Xi,r∪Cr−1);

this is achieved by having each machine send AlgRel(Xi,r ∪Cr−1) to every other machine, and thus
ensuring that the pool Cr is available on each machine during the next round.

At the end of the Θ(1/ε) runs, the algorithm returns the incumbent solution Sbest. This com-
pletes the description of our algorithm.

Avoiding duplicating the dataset. The algorithm above partitions the dataset over Θ(1/ε)
groups of machines and thus it duplicates the dataset Θ(1/ε) times (this problem also applies to
previous work [21]). This is done in order to achieve the best theoretical guarantee on the number of
runs, but in practice it is undesirable to duplicate the data. Instead, we can use a single group of m
machines and perform the computation of a single run sequentially over Θ(1/ε) sub-run, where each
sub-run performs the computation of one of the group of machines. This will lead to an algorithm
that performs Θ(1/ε2) runs using m machines and it does not duplicate the dataset.

The analysis. We devote the rest of this section to the analysis of the algorithm ParallelAlg. We
start by noting that, if we choose g and m so that gm = O(

√
n/s), the algorithm uses the following

resources and thus it satisfies the requirements of the model in Section 2.

Lemma 4.1. ParallelAlg can be implemented in the parallel model in Section 2 using the following
resources.
• The number of rounds is O(1/ε).
• The number of machines is O(

√
n/s).

• The amount of space used on each machine is O(
√
ns/(εα)) with high probability.

• In each round, the total amount of communication from a machine to all other machines is
O(
√
ns/(εα)) with high probability. The total amount of communication over all machines in

a given round is O(n/(εα)).

7

Proof: We will choose gm :=
√
n/s as our number of machines. Using this choice, we can provide

the guarantees stated in the lemma.
Note that we can combine the update step of the incumbent solution and the pool of a given

run with the next run’s distribution of elements into a single round of communication. Specifically,
each machine computes a new random assignment for each element of its sample Xi,r, assigns all of
its new pool elements to all machines, and sends its solution to the designated machine. Thus each
run corresponds to a round of communication. In each round, a machine communicates its sample
Xi,r, which has size O(n/m) = O(

√
ns/(εα)) with high probability, and the sets AlgSol(Xi,r∪Cr−1)

and AlgRel(Xi,r ∪ Cr−1) that have size O(s) to all other machines. Thus the total amount that a
machine communicates is O(

√
ns/(εα)+s ·gm) = O(

√
ns/(εα)) with high probability, and the total

amount that all machines communicate is O(n+ n/m · gm) = O(n/(εα)).
In every round, the space used on a given machine is the size of its sample Xi,r, which is

O(n/m) = O(
√
ns/(εα)) with high probability; the size of the incumbent solution, which is O(s);

and the size of the pool, which is O(gm · s/ε) = O(
√
ns/ε). Therefore the total amount of space

used on each machine is O(
√
ns/(εα)) with high probability. �

Thus it remains to analyze the quality of the solution constructed by the algorithm. In the
remainder of this section, we show that, if Alg satisfies the α-approximation and consistency prop-
erties defined above, the parallel algorithm ParallelAlg achieves an (α − O(ε)) approximation. For
simplicity, in this section we assume that Alg is deterministic; in Section B, we extend our approach
to the setting in which Alg is randomized. We start by introducing some notation. Let V(1/m)
denote the distribution over random subsets of V where each element is included independently
with probability 1/m. Let OPT be an optimal solution. Recall that Xi,r ∼ V(1/m) is the random
sample placed on machine i at the beginning of run r and Cr−1 is the pool of elements at the
beginning of run r. The following theorem is the crux of our analysis.

Theorem 4.2. Consider a run r ≥ 1 of the algorithm. Let Ĉr−1 ⊆ V . Then one of the following
must hold:

(1) EX1,r [f(AlgSol(Cr−1 ∪X1,r)) | Cr−1 = Ĉr−1] ≥ (1− ε)2α · f(OPT), or

(2) E[f(Cr ∩OPT) | Cr−1 = Ĉr−1]− f(Ĉr−1 ∩OPT) ≥ ε
2 · f(OPT).

Intuitively, Theorem 4.2 shows that, in expectation, if we have not found a good solution on
some machine after O(1/ε) runs, then the current pool C, available to every machine, must satisfy
f(C∩OPT) = f(OPT), and so each machine in the next run will in fact return a solution of quality
at least αf(OPT). The following theorem, whose proof we give in Section A, makes this formal.

Theorem 4.3. ParallelAlg achieves an (1− ε)3α approximation with constant probability.

We devote the rest of this section to the proof of Theorem 4.2. Consider a run r of the algorithm.
Let Ĉr−1 ⊆ V . In the following, we condition on the event that Cr−1 = Ĉr−1.

For each element e ∈ V , let pr(e) = PrX∼V(1/m)[e ∈ AlgRel(Ĉr−1 ∪X ∪ {e})] if e ∈ OPT \ Ĉr−1,
and 0 otherwise. As shown in the following lemma, the probability pr(e) gives us a handle on the
probability that e is in the union of the relevant sets.

Lemma 4.4. For each element e ∈ OPT \ Ĉr−1,

Pr[e ∈ ∪1≤i≤gmAlgRel(Ĉr−1 ∪Xi,r)] = 1− (1− pr(e))g,

where g is the number of groups into which the machines are partitioned.

8

Proof: For each group Gj , we can show that e is not in the union of the relevant sets for that
group with probability 1 − pr(e). Since different groups have independent partitions, e is not in
the union of the relevant sets for all machines with probability (1− pr(e))g, and the lemma follows.
More precisely, for each group Gj , let Y j be the event that e /∈

⋃
i∈Gj AlgRel(Ĉr−1 ∪Xi,r). Let Gj,`

denote the `th machine in Gj . We have

Pr
[
Y j

]
=

1

m

m∑
`=1

Pr[Y j | e is on Gj,`] =
1

m

m∑
`=1

Pr
X`,r

[e /∈ AlgRel(Ĉr−1 ∪X`,r) | e ∈ X`,r]

=
1

m

m∑
`=1

Pr
X∼V(1/m)

[e /∈ AlgRel(Ĉr−1 ∪X ∪ {e})] = 1− pr(e),

where the first equality follows from the fact that e assigned to a machine in Gj chosen independently
and uniformly at random, and the third from the fact that the distribution of X`,r ∼ V(1/m)
conditioned on e ∈ X`,r is identical to the distribution of X ∪ {e} with X ∼ V(1/m). Since the
events {Yj : 1 ≤ j ≤ g} are mutually independent, Pr[∧

1≤j≤N
Y j] =

∏g
j=1 Pr[Y j] = (1− pr(e))g. �

Returning to the proof of Theorem 4.2, we define a partition (Pr, Qr) of OPT \ Ĉr−1 as follows:

Pr = {e ∈ OPT \ Ĉr−1 : pr(e) < ε} Qr = {e ∈ OPT \ Ĉr−1 : pr(e) ≥ ε}

The following subsets of Pr and Qr are key to our analysis (recall that Xi,r is the random sample
placed on machine i at the beginning of the run r):

P ′r =
{
e ∈ Pr : e /∈ AlgRel(Ĉr−1 ∪X1,r ∪ {e})

}
Q′r = Qr ∩

(
∪gmi=1 AlgRel(Ĉr−1 ∪Xi,r)

)
.

Note that each element e ∈ Pr is in P ′r with probability 1− pr(e) ≥ 1− ε. Further, by Lemma 4.4,
each element e ∈ Qr is in Q′r with probability 1− (1− pr(e))g ≥ 1− 1

e ≥
1
2 .

It follows from the definition of P ′r and the consistency property of Alg that

AlgSol(Ĉr−1 ∪X1,r) = AlgSol(Ĉr−1 ∪X1,r ∪ P ′r).

Let OPTr−1 = Ĉr−1 ∩ OPT be the part of OPT in this iteration’s pool. Then, since Alg is an α
approximation and P ′r ∪OPTr−1 ⊆ OPT is a feasible solution, we have

f(AlgSol(Ĉr−1 ∪X1,r)) ≥ α · f(P ′r ∪OPTr−1).

Taking expectations on both sides, we have:

E[f(AlgSol(Ĉr−1 ∪X1,r))] ≥ α ·E[f(P ′r ∪OPTr−1)] ≥ (1− ε)α · f(Pr ∪OPTr−1), (1)

where the final inequality follows from Lemma 3.3, since f is monotone when restricted to OPT ⊇
Pr ∪OPTr−1, and P ′r contains every element of Pr with probability at least (1− ε).

Note that Q′r ⊆ (OPT ∩ Cr) \ OPTr−1. As before, f is monotone when restricted to OPT.
Additionally, Q′r contains every element of Qr with probability at least 1/2. Thus,

E[f(Cr ∩OPT) | Cr−1 = Ĉr−1] ≥ E[f(Q′r ∪OPTr−1)] ≥ 1

2
· f(Qr ∪OPTr−1) +

1

2
· f(OPTr−1),

9

where the final inequality follows from Lemma 3.3. Rearranging this inequality using the condition
Cr−1 = Ĉr−1 and the definition OPTr−1 = Ĉr−1 ∩OPT we obtain:

E[f(Cr ∩OPT)− f(Cr−1 ∩OPT) | Cr−1 = Ĉr−1] ≥ 1

2
(f(Qr ∪OPTr−1)− f(OPTr−1))

≥ 1

2
(f(Pr ∪Qr ∪OPTr−1)− f(Pr ∪OPTr−1)) =

1

2
(f(OPT)− f(Pr ∪OPTr−1)) , (2)

where the second inequality follows from submodularity.
Now, if f(Pr∪(Ĉr−1∩OPT)) ≥ (1−ε)·f(OPT) then this fact together with (1) imply that the first

property in the statement of Theorem 4.2 must hold. Otherwise, f(OPT)−f(Pr∪(Ĉr−1∩OPT)) ≥
ε · f(OPT); this fact together with (2) implies that the second property must hold.

This completes the description of our generic approach. In the following sections, we instantiate
the algorithm Alg with the standard Greedy algorithm and a heavily discretized Continuous Greedy
algorithm, and obtain our main results stated in the introduction.

5 A Parallel Greedy Algorithm
In this section, we combine the generic approach from Section 4 with the standard greedy algorithm,
and give our results for monotone maximization stated in Theorem 5.2.

We let Alg be the standard Greedy algorithm. We let AlgRel(N) = AlgSol(N) = Greedy(N). It
was shown in previous work that the Greedy algorithm satisfies the consistency property.

Lemma 5.1 ([12], Lemma 2). Let A ⊆ V and B ⊆ V be two disjoint subsets of V . Suppose that,
for each element e ∈ B, we have Greedy(A ∪ {e}) = Greedy(A). Then Greedy(A ∪B) = Greedy(A).

Informally, this simply means that if Greedy rejects some element e when presented with input
A ∪ {e}, then adding other similarly rejected elements to A ∪ {e} cannot cause e to be accepted.
This allows us to immediately apply the result from Section 4 and obtain the following result.

Theorem 5.2. Let f : 2V → R+ be a submodular function, and I ⊆ 2V be a hereditary set system.
For any ε > 0 there is a randomized distributed O(1/ε)-round algorithm that can be implemented in
the model described in Section 2. The algorithm is an (α−O(ε))-approximation with constant prob-
ability for the problem maxS∈I f(S), where α is the approximation ratio of the standard, sequential
greedy algorithm for the same problem.

6 A Parallel Continuous Greedy Algorithm
For monotone maximization subject to a matroid constraint, Theorem 5.2 guarantees only a (1/2−ε)
approximation, due to the limitations of the standard greedy algorithm. We obtain a nearly optimal
(1−1/e−ε) approximation by instantiating the framework in Section 4 with the DCGreedy algorithm
shown in Algorithm 1.

The DCGreedy algorithm is a heavily discretized version of the measured continuous greedy ap-
proach of [15], and it first constructs an approximate fractional solution to the problem maxx∈P (I) F (x)
of maximizing the multilinear extension F of f subject to the constraint that x is in the matroid
polytope P (I), and then rounds the fractional solution without loss using pipage rounding or swap
rounding [1, 10].

In this section, we combine the generic approach from Section 4 with the DCGreedy algorithm.
We use DCGreedy as Alg; the relevant set AlgRel(N) is the set of elements in the support of the
fractional solution x(1/ε), and AlgSol(N) is the integral solution obtained by rounding x(1/ε).

10

Algorithm 1: Discretized Con-
tinuous Greedy (DCGreedy).

Input: N ⊆ V
1 x(0)← 0
2 for t← 1 to 1/ε do
3 y(t)← GreedyStep(N,x(t))
4 x(t)← x(t− 1) + y(t)

5 S ← SwapRounding(x(1/ε), I)
6 Let T be the support of x(1/ε)
7 return (S, T)

Algorithm 2: Greedy Update Step (GreedyStep).
Input: N ⊆ V , x ∈ [0, 1]N

1 W ← ∅, y← 0
2 repeat
3 D ← {e ∈ N \W : W ∪ {e} ∈ I}
4 foreach e ∈ D do
5 we ← E[f(R(x + y) ∪ {e})− f(R(x + y))]

6 Let e∗ = arg maxe∈D we
7 if D = ∅ or we∗ < 0 then return y
8 else
9 ye∗ ← ye∗ + ε(1− xe∗)

10 W ←W ∪ {e∗}

Figure 1: The discretized continuous greedy algorithm. On line 5 of Algorithm 2, for a vector
z ∈ [0, 1]N , we use R(z) to denote a random subset of N that contains each element e independently
with probability ze. The weights on line 5 cannot be computed exactly in polynomial time, but
they can be efficiently approximated using random samples.

Note that it is necessary to ensure that the fractional solution has small support so that the size of
AlgRel(N) is small. We achieve this by heavily discretizing the continuous greedy algorithm, thereby
limiting the number of support updates performed in lines 3 and 4 of DCGreedy. Unfortunately,
performing this discretization naively introduces an error in the approximation that is too large.
Thus, we make use of a key idea from [3], which can be applied in the case of a matroid constraint.
This allows us to show the following lemma whose proof is deferred to Section C.

Lemma 6.1. The DCGreedy algorithm achieves an (1 − 1/e − O(ε)) approximation for monotone
functions and an (1/e−O(ε)) approximation for non-monotone functions.

The lemma above provides us with the desired approximation guarantees for DCGreedy, and
thus it remains to show the consistency property. Before doing so, we must address how the weights
are computed on line 5 of the GreedyStep algorithm (see Algorithm 2). Computing the weights
exactly requires exponential time, but they can be approximated in polynomial time using random
samples. In order to illustrate the main ideas behind the proof of consistency, we assume that the
weights are computed exactly, since this will keep the algorithm deterministic. In the Appendix, we
remove this assumption and we analyze the resulting randomized algorithm using an extension of
our framework.

Lemma 6.2. Let A and B be two disjoint subsets of V . Suppose that, for each element e ∈ B, we
have DCGreedyRel(A ∪ {e}) = DCGreedyRel(A). Then DCGreedySol(A ∪B) = DCGreedySol(A).

Proof: We will show that the GreedyStep algorithm picks the same set W on input (A,x) and
(A∪B,x), which implies the lemma. Suppose for contradiction that the algorithm makes different
choices on input (A,x) and (A ∪ B,x). Consider the first iteration where the two runs differ, and
let e be the element added to W in that iteration on input (A∪B,x). Note that e /∈ A and thus we

11

have e ∈ B. But then e will be added to W on input (A∪{e} ,x). Thus e ∈ DCGreedyRel(A∪{e}),
which contradicts the fact that e ∈ B. �

Thus we can apply the result from Section 4 and obtain the following result.

Theorem 6.3. Let f : 2V → R+ be a submodular function, and I ⊆ 2V be a matroid. For any
ε > 0 there is a randomized distributed O(1/ε)-round algorithm that can be implemented in the model
described in Section 2. The algorithm is an (α−O(ε))-approximation with constant probability for
the problem maxS∈I f(S), where α is (1− 1/e) for monotone f and 1/e for general f .

7 Faster Algorithms
In this section, we build on the techniques from the previous sections to give a distributed algorithm
for non-monotone maximization that requires only two rounds, rather than O(1/ε) rounds, and
achieves an improved approximation guarantee over the two-round algorithm proposed in [12]. In
the case of non-monotone maximization over a matroid, we show that our techniques can be used
to obtain a new, fast sequential algorithm as well.

7.1 Two-Round Algorithms For Non-Monotone Maximization

We first give an improved two-round algorithm for non-monotone maximization subject to a any
hereditary constraint. The algorithm is similar to that of [12] for monotone maximization; perhaps
surprisingly, we show that this approach achieves a good approximation even for non-monotone
functions. We randomly partition the elements onto the m machines, and run Greedy on the
elements Vi on machine i to pick a set Si. We place the sets Si on a single machine and we run any
algorithm Alg on B :=

⋃
i Si to find a solution T . We return the best solution amongst S1, . . . , Sm, T .

We analyze the algorithm for any hereditary constraint I for which the Greedy algorithm satisfies
the following property (for some γ), which we refer to as the strong greedy property:

∀S ∈ I : f(Greedy(V)) ≥ γ · f(Greedy(V) ∪ S) (GP)

By the standard Greedy analysis, we have γ = 1/2 for a matroid constraint and γ = 1/(p + 1)
for a p-system constraint.

Theorem 7.1. Suppose that Greedy satisfies the strong greedy property with constant γ and let
Alg be any β-approximation for the problem maxS∈I f(S). Then there is a randomized, two-round
distributed algorithm that achieves a (1− 1

m) βγ
β+γ approximation in expectation for maxS∈I f(S).

Proof: For each element e, we let probability pe = PrX∼V(1/m)[e ∈ Greedy(X ∪ {e})], if e ∈ OPT,
and 0 otherwise. Then, let p ∈ [0, 1]V denote the vector whose entries are given by the probabilities
pe.

We first analyze the expected value of the Greedy solution S1. Let

O = {e ∈ OPT: e /∈ Greedy(V1 ∪ {e})} .

By Lemma 5.1, Greedy(V1 ∪O) = Greedy(V1) = S1, and by (GP), f(S1) ≥ γ · f(S1 ∪O). Therefore

E[f(S1)] ≥ γ ·E[f(S1 ∪O)]

= γ ·E[f−(1S1∪O)]

≥ γ · f−(E[1S1∪O])

= γ · f−(E[1S1] + (1OPT − p)). (3)

12

On line three, we have used the fact that f− is convex and on line four we have used the fact that
E[1S1∪O] = E[1S1] + (1OPT − p).

Now consider the solution T . Since Alg is a β-approximation, we have

E[f(T)] ≥ β ·E[f(B ∩OPT)]

= β ·E[f−(1B∩OPT)]

≥ β · f−(E[1B∩OPT])

= β · f−(p). (4)

Similarly to above, we have used the convexity of f− and the fact that E[1B∩OPT] = p.
By combining (3) and (4), and using convexity of f−, we obtain

1

γ
E[f(S1)] +

1

β
E[f(T)] ≥ f−(E[1S1] + (1OPT − p)) + f−(p) ≥ 2 · f−

(
E[1S1] + 1OPT

2

)
.

Since S1 ⊆ V1 and V1 is a 1/m sample of V , we have E[1S1] ≤ 1
m ·1V . Therefore, using the definition

of f− and the non-negativity of f , we obtain

2 · f−
(
E[1S1] + 1OPT

2

)
≥
(

1− 1

m

)
f(OPT).

Thus
max{E[f(S1)],E[f(T)]} ≥

(
1− 1

m

)
βγ

β + γ
· f(OPT).

�

Examples of results. We conclude this section with some examples of approximation guarantees
that we can obtain using Theorem 7.1. For a matroid constraint, we have γ = 1/2 and, if we use
the measured Continuous Greedy algorithm for Alg, we have β = 1/e; thus we obtain a

(
1− 1

m

)
1

2+e
approximation. We remark that, for a cardinality constraint, one can strengthen the proof of
Theorem 7.1 slightly and obtain a

(
1− 1

m

)
1
e

(
1− 1

e

)
approximation; we give the details in Section D.

For a p-system constraint, we have γ = 1/(p+ 1). We can use the algorithm of Gupta et al. [18]
for Alg that achieves an approximation β = 3/

(
2p+ 4 + 2

p

)
when combined with the algorithm

of [7] for unconstrained non-monotone maximization. Thus we obtain a 3
(
1− 1

m

)
/
(

5p+ 7 + 2
p

)
approximation.

7.2 A Fast Sequential Algorithm for Matroid Constraints

We now show how our approach can be used to obtain a fast sequential algorithm for non-monotone
maximization subject to a matroid constraint. The analysis given in Theorem 7.1 only relies on
the following two properties of the Greedy algorithm: it satisfies (GP) and Lemma 5.1. Thus we
can replace the Greedy algorithm by any algorithm satisfying these two properties. In particular,
the Descending Thresholds Greedy (shown in Figure 2 as DThreshGreedy) of [20, 3] satisfies these
conditions with γ = 1/2− ε.

Our algorithm proceeds as follows. We randomly partition the elements into m := 1/ε samples
V1, V2, . . . , Vm. On each sample, we run the Descending Thresholds Greedy algorithm on Vi to
obtain a solution Si. Let A := argmaxi∈[m] f(Si) and B :=

⋃
i Si. Then, |B| ≤ k/ε, where k is the

rank of the matroid. We run any β-approximation algorithm Alg on B to find a solution B′, and
we return the better of A and B′. We obtain the following result.

13

Algorithm 3: Descending Thresholds
Greedy algorithm (DThreshGreedy).

Input: N ⊆ V
1 S ← ∅, d← maxe∈N f({e})
2 for w = d; w ≥ ε

nd; w ← w(1− ε) do
3 foreach e ∈ N do
4 if S ∪ {e} ∈ I
5 and f(S ∪ {e})− f(S) ≥ w then
6 S ← S ∪ {e}

7 return S

Figure 2: The Descending Thresholds Greedy algorithm of [20, 3].

Theorem 7.2. There is a sequential, randomized (1
2+e−ε)-approximation algorithm for the problem

maxS∈I f(S), where I is any matroid constraint, running in time O(nε log n) + poly(kε).

Proof: The running time of the Descending Thresholds Greedy algorithm on a ground set of size
s is O(sε log(sε)). Each random sample has size O(εn) with high probability, and thus the total
time needed to construct B is O(nε log n) with high probability. It follows from the analysis in
Theorem 7.1 that the best of the two solutions A and a β-approximation to maxS⊆B:S∈I f(S) is a

1
2+ 1

β

− ε approximation. We can then use any 1/e-approximation algorithm as Alg. �

7.3 Monotone Maximization with a Cardinality Constraint

Here, we show how the previous techniques give a simple two-round algorithm that achieves a 1/2−ε
approximation for monotone maximization subject to a cardinality constraint.

Theorem 7.3. There is a randomized, two-round, distributed algorithm achieving a 1
2 − ε approxi-

mation in expectation for maxS:|S|≤k f(S), where f is a monotone function.

The algorithm. Let ε > 0 be a parameter. The algorithm uses Θ(log(1/ε)/ε) groups of machines
with m machines in each group (and thus the total number of machines is O(m log(1/ε)/ε)).

We randomly distribute the ground set V to the machines as follows. Amongst each group of m
machines, we partition V uniformly at random; each element e chooses an index i ∈ [m] uniformly
and independently at random and is assigned to the ith machine in the group. We do this separately
for each group of machines, i.e., each element appears on exactly one machine in each group.

We run Greedy on each of the machines to select a set of k elements. Let S be the union of all of
the Greedy solutions. We place S on a single machine together with a random sample X ∼ V(1/m).
On this machine, we pick the final solution as follows. For each value a ∈ {0, 1, . . . , k}, we select
a solution Ta as follows. Let Greedy(f,X, a) denote the first a elements chosen from the random
sample X using the greedy algorithm on objective function f .

Then, let T 1
a = Greedy(f,X, a) and define g(A) = f(T 1

a ∪ A) − f(T 1
a) for each A ⊆ V . Note

that g is a non-negative, monotone submodular function. Let T 2
a = Greedy(g, S, k − a); that is,

we pick k − a elements from S using the Greedy algorithm with the function g as input. We set
Ta = T 1

a ∪ T 2
a . The final solution T is the better of the k + 1 solutions Ta, where a ∈ {0, 1, . . . , k}.

14

The analysis. In the following, we show that the algorithm above is a 1/2− ε approximation. For
each element e, we define a probability pe = PrX∼V(1/m)[e ∈ Greedy(X ∪ {e})], if e ∈ OPT and 0
otherwise. We define a partition (O1, O2) of OPT as follows:

O1 = {e ∈ OPT | pe < ε} , O2 = {e ∈ OPT | pe ≥ ε} .

Let a = |O1| and let
O′1 = {e ∈ O1 | e /∈ Greedy(f,X ∪ {e} , a)} .

By the consistency property of the greedy algorithm (Lemma 5.1),

T 1
a = Greedy(f,X, a) = Greedy(f,X ∪O′1, a).

Additionally, for a cardinality constraint, Greedy satisfies (GP) with γ = 1/2 (see Subsection 7.1).
Therefore

f(T 1
a) ≥ 1

2
f(T 1

a ∪O′1), (5)

g(T 2
a) ≥ 1

2
g(T 2

a ∪ (O2 ∩ S)). (6)

The inequality (6) can be rewritten as

f(T 1
a ∪ T 2

a)− f(T 1
a) ≥ 1

2
(f(T 1

a ∪ T 2
a ∪ (O2 ∩ S))− f(T 1

a)). (7)

Adding (5) and (7), we obtain

f(Ta) ≥
1

2
(f(T 1

a ∪O′1) + f(T 1
a ∪ T 2

a ∪ (O2 ∩ S))− f(T 1
a))

≥ 1

2
f(Ta ∪O′1 ∪ (O2 ∩ S))

≥ 1

2
f(O′1 ∪ (O2 ∩ S)),

where the last two inequalities follow from submodularity and monotonicity. Note that each element
e ∈ O1 is in O′1 with probability 1− pe ≥ 1− ε. Each element e ∈ O2 is in the union of the Greedy
solutions from a given group of machines with probability pe ≥ ε; since there are Θ(log(1/ε)/ε)
groups of machines and the groups have independent partitions, e is in S with probability at least
1− ε. Therefore

E[1O′1∪(O2∩S)] ≥ (1− ε)1OPT.

Thus
E[f(Ta)] ≥

1

2
f−(E[1O′1∪(O2∩S)]) ≥ (1− ε)1

2
f(OPT).

In the last inequality, we have used that if x ≥ y component-wise and f is monotone, f−(x) ≥ f−(y).

Acknowledgments. This work was done in part while A.E. was with the Computer Science
department at the University of Warwick and a visitor to the Toyota Technological Institute at
Chicago, H.N. was with the Toyota Technological Institute at Chicago, and J.W. was with the
Computer Science department at the University of Warwick. J.W. was supported by EPSRC grant
EP/J021814/1 and ERC Starting Grant 335288-OptApprox.

15

References
[1] Alexander Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing algo-

rithms with proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–
328, 2004.

[2] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), pages 574–583, 2014.

[3] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1497–1514, 2014.

[4] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS), pages 273–284, 2013.

[5] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy parallel approxi-
mate set cover and variants. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 23–32, 2011.

[6] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1433–1452, 2014.

[7] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight linear time
(1/2)-approximation for unconstrained submodular maximization. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1384–1402, 2012.

[8] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
tradeoff in submodular maximization. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1149–1168, 2015.

[9] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular
set function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

[10] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 575–584, 2010.

[11] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-reduce. In Inter-
national World Wide Web Conference (WWW), pages 231–240, 2010.

[12] Rafael da Ponte Barbosa, Alina Ene, Huy Le Nguyen, and Justin Ward. The power of ran-
domization: Distributed submodular maximization on massive datasets. In International Con-
ference on Machine Learning (ICML), pages 1236–1244, 2015.

[13] Shahar Dobzinski and Jan Vondrák. From query complexity to computational complexity. In
ACM Symposium on Theory of Computing (STOC), pages 1107–1116, 2012.

16

[14] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[15] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy algo-
rithm for submodular maximization. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 570–579, 2011.

[16] M L Fisher, G L Nemhauser, and L A Wolsey. An analysis of approximations for maximizing
submodular set functions—ii. Mathematical Programming Studies, 8:73–87, 1978.

[17] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In International Symposium on Algorithms and Computation,
pages 374–383, 2011.

[18] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In Conference on Web
and Internet Economics (WINE), pages 246–257, 2010.

[19] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapre-
duce. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 938–948, 2010.

[20] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algo-
rithms in mapreduce and streaming. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 1–10, 2013.

[21] Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for dis-
tributed submodular maximization. In ACM Symposium on Theory of Computing (STOC),
pages 153–162, 2015.

[22] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and An-
dreas Krause. Lazier than lazy greedy. In AAAI Conference on Artificial Intelligence, pages
1812–1818, 2015.

[23] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submod-
ular maximization: Identifying representative elements in massive data. In Advances in Neural
Information Processing Systems (NIPS), pages 2049–2057, 2013.

[24] G L Nemhauser, L A Wolsey, and M L Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.

[25] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[26] Jan Vondrák. Symmetry and approximability of submodular maximization problems. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 651–670, 2009.

17

A Proof of Theorem 4.3
Theorem 4.3. ParallelAlg achieves an (1− ε)3α approximation with constant probability.
Proof: Let R = c/ε be the total number of runs, and C = (C0, C1, . . . , CR). Let Ir(Cr−1) ∈ {0, 1}
be equal to 1 if and only if

EX1,r [f(AlgSol(Cr−1 ∪X1,r))] ≥ (1− ε)2α · f(OPT).

Let

Φr(C) = Ir(Cr−1) +
2(f(Cr ∩OPT)− f(Cr−1 ∩OPT))

εf(OPT)
,

Φ(C) =
R∑
r=1

Φr(Cr−1) ≤
R∑
r=1

Ir(Cr−1) +
2f(CR ∩OPT)

εf(OPT)
≤

R∑
r=1

Ir(Cr−1) +
2

ε
.

Taking expectation over the random choices of C, we have

EC [Φ(C)] ≤
R∑
r=1

E[Ir(Cr−1)] +
2

ε

On the other hand, by Theorem 4.2, E[Φr(Cr−1)] ≥ 1 and therefore E[Φ(C)] ≥ R. Thus

2

ε
+

R∑
r=1

E[Ir(Cr−1)] ≥ Φ(C) ≥ R.

Since R > 6/ε, we have
R∑
r=1

E[Ir(Ĉr−1)] ≥ 2R

3
.

Therefore, with probability at least 2/3, there exists a run r such that Ir(Cr−1) = 1. Fix the
randomness up to the first such run, i.e., condition on a fixed Cr−1 = Ĉr−1 such that Ir(Ĉr−1) = 1
and Cr, . . . , CR remain random. Assume for contradiction that with probability at least 1−εα(1−ε)2

over the choices of X1,r,

f(AlgSol(Cr−1 ∪X1,r)) < (1− ε)3α · f(OPT).

Then we have

E[f(AlgSol(Cr−1 ∪X1,r))] < (εα(1− ε)2 + (1− εα(1− ε)2)(1− ε)3α)f(OPT)

=
(
ε+ (1− εα(1− ε)2)(1− ε)

)
(1− ε)2αf(OPT)

< (1− ε)2αf(OPT),

contradicting our assumption on Cr−1. Thus, with probability at least εα(1− ε)2, we have

f(AlgSol(Cr−1 ∪X1,r)) ≥ (1− ε)3α · f(OPT).

Notice that the above argument applies not only to machine 1 in run r but also the first ma-
chine in each of the g groups in the same run r and their random samples Xi,r are independent.
Thus, since g ≥ c/(εα) for a sufficiently large constant c, with probability at least 5/6, we have
maxi f(AlgSol(Cr−1 ∪Xi,r)) ≥ (1− ε)3α · f(OPT). Overall, the algorithm succeeds with probability
at least 2/3 · 5/6 = 5/9. �

18

B A Framework for Parallelizing Randomized Algorithms
In this section, we extend the framework from Section 4 to the setting in which the sequential
algorithm Alg is randomized.

We represent the randomness of Alg as a vector b ∼ D drawn from some distribution D. It is
convenient to have the randomness b given as input to the algorithm. More precisely, we assume
that Alg takes as input a subset N ⊆ V and a random vector b ∼ D and returns a pair of sets,
AlgSol(N,b) and AlgRel(N,b). We assume that the size of b depends only on the size of V , and
hence is independent of the size of N . Finally, we assume that Alg has the following properties.

1. ((α, ε, δ)-Approximation) Let OPT = argmaxS∈I,S⊆V f(S) be an optimal solution over the
entire ground set V . Let A ⊆ V and b ∼ D. Let B ⊆ OPT be a subset such that, for each
e ∈ B, e /∈ AlgRel(A ∪ {e} ,b). We have

Pr
b∼D

[
f(AlgSol(A ∪B,b)) ≥ α · f((A ∪B) ∩OPT)− εf(OPT)

]
≥ 1− δ.

2. (Consistency) Let b be any fixed vector. Let A and B be two disjoint subsets of V . Suppose
that, for each element e ∈ B, we have AlgRel(A ∪ {e} ,b) = AlgRel(A,b). Then AlgSol(A ∪
B,b) = AlgSol(A,b).

Note that our assumption that the length of b is independent of the size of the input subset
allows expressions such as Alg(A ∪ {e} ,b) and Alg(A,b) to both make sense despite the fact that
|A ∪ {e} | 6= |A|.

Our algorithm works exactly as that described in Section 4, with the exception that each machine
i in round r now additionally samples a random vector bi,r ∼ D. Then, on each machine, we
run Alg on the set Vi,r := Xi,r ∪ C of elements on the machine and obtain AlgSol(Vi,r,bi,r) and
AlgRel(Vi,r,bi,r). As in Section 4, the union

⋃
i AlgRel(Vi,r,bi,r) of relevant elements is added to C,

and the solution Sbest is replaced by the best solution among {AlgSol(Vi,r,bi,r) : 1 ≤ i ≤M} and
Sbest.

In the final round we place C on a single machine, sample a random vector b ∼ D, and run Alg
on C, and b to obtain the solution AlgSol(C,b). The final solution is the best among AlgSol(C,b)
and Sbest.

Analysis. The number of rounds, number of machines, space per machine, and amount of com-
munication are the same as in Section 4. Thus, we focus on the approximation guarantee of the
parallel algorithm. Using Theorem B.1 instead of Theorem 4.2, we can then finish the analysis in
almost the same way as the deterministic case. The only difference is that instead of arguing that
the algorithm works well with most of the random choices for Xi,r as before, the proof now argues
that the algorithm works well with most of the random choices for both Xi,r and bi,r. Nonetheless,
the same proof except for this substitution works.

Theorem B.1. Consider a run r > 1 of the algorithm. Let Ĉr−1 ⊆ V . Then one of the following
must hold:

(1) EX1,r,b1,r [f(AlgSol(Cr−1 ∪X1,r,b1,r)) | Cr−1 = Ĉr−1] ≥ (α−O(ε)) · f(OPT), or

(2) E[f(Cr ∩OPT) | Cr−1 = Ĉr−1]− f(Ĉr−1 ∩OPT) ≥ ε
2 · f(OPT).

19

Proof: Consider a run r of the algorithm. Let Ĉr−1 ⊆ V . In the following, we condition on the
event that Cr−1 = Ĉr−1.

For each element e ∈ V , let pr(e) = PrX∼V(1/m),b∼D[e ∈ AlgRel(Ĉr−1 ∪ X ∪ {e} ,b)], if e ∈
OPT \ Ĉr−1, and 0 otherwise. The proof of the following lemma is exactly the same as Lemma 4.4
and thus is omitted.

Lemma B.2. For each element e ∈ OPT \ Ĉr−1,

Pr[e ∈ ∪1≤i≤gmAlgRel(Ĉr−1 ∪Xi,r,bi,r)] = 1− (1− pr(e))g,

where g is the number of groups into which the machines are partitioned.

We define a partition (Pr, Qr) of OPT \ Ĉr−1 as follows:

Pr = {e ∈ OPT \ Ĉr−1 : pr(e) < ε}, Qr = {e ∈ OPT \ Ĉr−1 : pr(e) ≥ ε}.

The following subsets of Pr and Qr are key to our analysis (recall that Xi,r is the random
sample placed on machine i at the beginning of the run and bi,r is the random vector sampled by
machine i in round r):

P ′r = {e ∈ Pr : e /∈ AlgRel(Ĉr−1 ∪X1,r ∪ {e} ,b1,r)}, Q′r = Qr ∩
(
∪gmi=1 AlgRel(Ĉr−1 ∪Xi,r,bi,r)

)
.

Note that each element e ∈ Pr is in P ′r with probability 1− pr(e) ≥ 1− ε. Further, by Lemma B.2,
each element e ∈ Qr is in Q′r with probability 1− (1− pr(e))g ≥ 1− 1

e ≥
1
2 .

It follows from the definition of P ′r and the consistency property of Alg that

AlgSol(Ĉr−1 ∪X1,r,b1,r) = AlgSol(Ĉr−1 ∪X1,r ∪ P ′r,b1,r). (8)

Let OPTr−1 = Ĉr−1 ∩ OPT be the part of OPT in this iteration’s pool. We apply the (α, ε, δ)-
approximation property with A = Ĉr−1 ∪X1,r, b = b1,r, and B = P ′r to obtain

Pr
b1,r

[
AlgSol(Ĉr−1 ∪X1,r ∪ P ′r,b1,r) ≥ α · f((Ĉr−1 ∪X1,r ∪ P ′r) ∩OPT)− εf(OPT)

]
≥ 1− δ.

Since f is monotone when restricted to OPT, and P ′r ∪OPTr−1 ⊆ (Ĉr−1 ∪X1,r ∪ P ′r) ∩OPT, this
inequality implies that

Pr
b1,r

[
AlgSol(Ĉr−1 ∪X1,r ∪ P ′r,b1,r) ≥ α · f(P ′r ∪OPTr−1)− εf(OPT)

]
≥ 1− δ.

Therefore, equation (8) gives

Pr
b1,r

[
AlgSol(Ĉr−1 ∪X1,r,b1,r) ≥ α · f(P ′r ∪OPTr−1)− εf(OPT)

]
≥ 1− δ.

Taking expectation on both sides gives

EX1,r,b1,r [f(AlgSol(Ĉr−1 ∪X1,r,b1,r))] ≥ (1− δ)α · EX1,r [f(P ′r ∪OPTr−1)]− εf(OPT)

≥ α · EX1,r [f(P ′r ∪OPTr−1)]− (ε+ αδ)f(OPT)

≥ (1− ε)α · f(Pr ∪OPTr−1)− (ε+ αδ)f(OPT)

≥ (1− ε)α · f(Pr ∪OPTr−1)− 2εf(OPT). (9)

20

Here, the second inequality follows from the fact that f is monotone restricted to OPT ⊇ (P ′r ∪
OPTr−1), the third from Lemma 3.3 and the fact that every element of Pr appears in P ′r with
probability at least (1− ε), and the last from our assumption that αδ ≤ ε.

Next, note that Q′r ⊆ (Cr ∩ OPT) \ OPTr−1. This together with monotonicity of f restricted
to r imply:

E[f(Cr ∩OPT) | Cr−1 = Ĉr−1] ≥ E[f(Q′r ∪OPTr−1)]

≥ 1

2
· f(Qr ∪OPTr−1) +

1

2
· f(OPTr−1),

where the last inequality follows from Lemma 3.3 and Lemma B.2. Rearranging this inequality
using the condition Cr−1 = Ĉr−1 and the definition OPTr−1 = Ĉr−1 ∩OPT we obtain:

E[f(Cr ∩OPT)− f(Cr−1 ∩OPT) | Cr−1 = Ĉr−1] ≥ 1

2
(f(Qr ∪OPTr−1)− f(OPTr−1))

≥ 1

2
(f(Pr ∪Qr ∪OPTr−1)− f(Pr ∪OPTr−1))

=
1

2

(
f(OPT)− f(Pr ∪ (Ĉr−1 ∩OPT))

)
, (10)

where the second inequality follows from submodularity.
Now, if f(Pr ∪ (Ĉr−1 ∩OPT)) ≥ (1− ε) · f(OPT) then this fact together with (9) imply the first

property in the statement of Theorem B.1 must hold. Otherwise, f(OPT)−f(Pr∪(Ĉr−1∩OPT)) ≥
ε · f(OPT); this fact together with (10) imply that the second property must hold. �

C Analysis of DCGreedy for the Application of the Randomized Framework
In this section, we show that we can instantiate the randomized framework from Section B with a
modified DCGreedy algorithm, and obtain the results stated in Section 6. Specifically, we extend
the DCGreedy algorithm to the setting in which the weights we on line 5 of GreedyStep are evaluated
approximately via samples. The resulting GreedyStep is shown in Algorithm 4.

We devote the rest of this section to proving the following result.

Theorem C.1. The modified DCGreedy algorithm with approximate evaluation of we’s satisfies the
consistency property and the (α, ε, δ)-approximation property with δ = 1/n and α = 1/e− O(ε) for
non-monotone functions and α = 1− 1/e−O(ε) for monotone functions.

We begin by verifying that the consistency property holds. Consider a vector b and two subsets
A,B ⊆ V such that, for each element e ∈ B, we have DCGreedyRel(A∪{e} ,b) = DCGreedyRel(A,b).
We shall show that the approximate GreedyStep algorithm always picks the same set W on input
(A,x,b) and (A ∪ B,x,b). (Note that, since the two runs have the same randomness b, they will
use the same approximate weights.) Suppose for contradiction that the algorithm makes different
choices on input (A,x,b) and (A ∪ B,x,b). Consider the first iteration where the two runs differ,
and let e be the element added to W in that iteration on input (A ∪ B,x,b). Note that e /∈ A
and thus we have e ∈ B. But then e would be added to W on input (A ∪ {e} ,x,b), as well. Thus
e ∈ DCGreedyRel(A∪{e} ,b), which contradicts the fact that e ∈ B. Thus the consistency property
holds.

Now we verify that the (α, ε, δ)-approximation property holds. The analysis of the modified
DCGreedy algorithm is similar to the analyses in [15, 3].

21

Algorithm 4: Greedy Update Step (GreedyStep) with randomized
approximation of we’s.

Input: N ⊆ V , x ∈ [0, 1]N

1 W ← ∅
2 y← 0
3 repeat
4 Let D ← {e ∈ N \W : W ∪ {e} ∈ I}
5 Pick ` = Θ

(
s logn
ε2

)
independent random samples for R(x + y)

6 foreach e ∈ D do
7 we ← approximation of E[f(R(x + y) ∪ {e})− f(R(x + y))]

via above samples

8 Let e∗ = arg maxe∈D{we}
9 if D = ∅ or we∗ < 0 then

10 return y
11 else
12 ye∗ ← ye∗ + ε(1− xe∗)
13 W ←W ∪ {e}

Figure 3: Discretized continuous greedy (DCGreedy) with approximate evaluation of the we’s on
line 7. The weight we is estimated as follows. Given ` independent random sets R1, . . . , R` (the
samples for R(x + y)), we is set to 1

`

∑`
i=1(f(Ri ∪ {e})− f(Ri)).

Lemma C.2. Let I be matroid on V and OPT = argmaxS∈I,S⊆V f(S). Let A ⊆ V and b ∼ D.
Let B ⊆ OPT be a subset such that, for each e ∈ B, e /∈ DCGreedy(A ∪ {e} ,b). Then, we have

Pr
b∼D

[F (DCGreedy(A ∪B,b)) ≥ α · f((A ∪B) ∩OPT)− ε · f(OPT)] ≥ 1− 1/n,

where α = (1− 1/e−O(ε)) for monotone f and (1/e−O(ε)) for general f .

In the remainder of this section, we prove Lemma C.2. If x,y ∈ [0, 1]N , we denote by x ∨ y
the vector such that (x ∨ y)i = max {xi,yi}. Similarly, x ∧ y is the vector such that (x ∧ y)i =
min {xi,yi}. Let OPT = argmaxS⊆V,S∈I f(S) be an optimal solution over the entire ground set V ,
and consider the execution of DCGreedy(A∪OPT,b). Let Z be the set of vectors that DCGreedy(A∪
OPT,b) considers when computing the weights of elements, i.e., the set of all vectors z := x + y,
where x = x(t) for some iteration t of DCGreedy(A ∪ OPT,b) and y is the vector constructed by
previous iterations of GreedyStep(A ∪ OPT,x,b). Formally, we associate the vector zj ∈ Z with
the jth execution of GreedyStep’s main loop (counted across all the iterations of DCGreedy). Note
that |Z| ≤ s/ε, since GreedyStep’s loop is executed at most s times for each of the 1/ε iterations of
DCGreedy. For each sample, the random string b can simply store |V | random thresholds in [0, 1].
For a given vector z, these thresholds can be used to round z to an integral indicator vector (a
sample of R(z)) in order to estimate E[f(R(z) ∪ {e})− f(R(z)].

Consider the jth time GreedyStep executes line 7, and suppose that for each element e ∈ A∪OPT
we compute a weight we(zj ,b), by using ` random samples encoded by b to estimate R(zj), as in

22

GreedyStep. We say that we(zj ,b) is a good estimate if

|we(zj ,b)−E[f(R(zj) ∪ {e})− f(R(zj))]| ≤
ε

2s
f(OPT) +

ε

2
E[f(R(zj) ∪ {e})− f(R(zj))].

We say that b is good if all of the weights {we(zj ,b) : zj ∈ Z, e ∈ A ∪OPT} are good estimates.

Lemma C.3. The randomness b is good with probability at least 1− 1/n.

Proof: Let d = maxe∈V f(e) ≤ f(OPT). Consider a weight we and let R1, . . . , R` denote the
independent random sets used to compute we in line 7 of GreedyStep. For each i ∈ [`], let we,i =
f(Ri∪{e})−f(Ri). Note that, by submodularity, we,i ≤ d ≤ f(OPT). We use the following version
of the Chernoff bound.

Lemma C.4 (Lemma 2.3 in [3]). Let X1, . . . , Xm be independent random variables such that for
each i, Xi ∈ [0, 1]. Let X = 1

m

∑m
i=1Xi and µ = E[X]. Then

Pr[X > (1 + α)µ+ β] ≤ exp

(
−mαβ

3

)
,

Pr[X < (1− α)µ− β] ≤ exp

(
−mαβ

2

)
.

If we choose an appropriately large constant in the definition of `, then setting m = `, Xi =
we,i/d, α = ε/2, and β = ε/2s in Lemma C.4, we obtain that we is a good estimate with probability
at least 1− 1/n4 ≥ 1− ε/(sn2). The size of Z is at most s/ε and for each element of Z, there are
at most n weights to be estimated, so the lemma follows by the union bound. �

Now, note that if some random string b is good, then all weights calculated by DCGreedy(A ∪
B,b) in are good also, since A ∪ B ⊆ A ∪ OPT, and, as we have noted, the consistency property
implies that GreedyStep picks the same set on inputs (A ∪ B,x,b) and (A,x,b) in each iteration.
We now fix some good b, and show that for any B ⊆ OPT \A, we must have:

F (DCGreedy(A ∪B,b)) ≥ α · f((A ∪B) ∩OPT). (11)

Where α = 1/e−O(ε) for non-monotone functions and α = 1− 1/e−O(ε) for monotone functions.
When f is monotone, this follows from previous work [3]. Thus we focus on the non-monotone case.
This will finish the proof Lemma C.2.

Let N = A ∪ B for some B ⊆ OPT \ A and consider the restricted maximization problem
maxS⊆N,S∈I f(S). We will need the following two lemmas from previous work. The first lemma is
well-known and it follows from the exchange property of a matroid (see for example [25]).

Lemma C.5. LetM = (N, I) be a matroid and let B1, B2 ∈ I be two bases in the matroid. There
is a bijection π : B1 → B2 such that for every element e ∈ B1 we have B1 \ {e} ∪ {π(e)} ∈ I.

Lemma C.6 ([15]). Consider a vector x ∈ [0, 1]N . Assuming xe ≤ a for every e ∈ V , then for
every set S ⊆ N , F (x ∨ 1S) ≥ (1− a)f(S).

Now, we begin by showing that DCGreedy improves the current solution by a large amount in
each step.

Lemma C.7. Suppose that the randomness b is good. In each iteration t of DCGreedy, F (x(t))−
F (x(t− 1)) ≥ ε(1− ε)((1− ε)tf(N ∩OPT)− F (x(t)))− ε2f(OPT).

23

Proof: Fix an iteration t, and for brevity denote x = x(t − 1), x′ = x(t). Let W be the set of
elements selected by the GreedyStep for this update, and let y be the associated update vector.
We suppose without loss of generality that |W | = s, where s is the rank of the matroid I, since if
|W | < s we can simply add s− |W | dummy elements to W . Let ei be the ith element added to W
by GreedyStep and let y(i) be the value of y after i elements have been added to W .

By Lemma C.5, there is a bijective mapping π : N ∩OPT→W ′ between N ∩OPT and a subset
W ′ ⊆ W of size |N ∩ OPT| such that, for each element o ∈ N ∩ OPT, W \ {π(o)} ∪ {o} ∈ I. For
each i ∈ [s], let oi := π−1(ei) if ei ∈W ′ and oi := ei otherwise.

For each i, we have wei ≥ woi , since oi is a candidate element during the iteration of GreedyStep
that picked ei. Thus, since all the weights are good estimates, we have

E[f(R(x + y(i− 1)) ∪ {ei})− f(R(x + y(i− 1)))]

≥ (1− ε)E[f(R(x + y(i− 1)) ∪ {oi})− f(R(x + y(i− 1)))]− ε

s
f(OPT). (12)

for all y and i. Then, we have:

F (x′)− F (x) = F (x + y)− F (x)

=

s∑
i=1

(F (x + y(i))− F (x + y(i− 1)))

=

s∑
i=1

ε(1− xei)
∂F

∂xei

∣∣∣
x+y(i−1)

=
s∑
i=1

εE[f(R(x + y(i− 1)) ∪ {ei})− f(R(x + y(i− 1)))]

≥
s∑
i=1

ε
(

(1− ε)E[f(R(x + y(i− 1)) ∪ {oi})− f(R(x + y(i− 1)))]− ε

s
f(OPT)

)
≥

s∑
i=1

ε
(

(1− ε)E[f(R(x′) ∪ {oi})− f(R(x′))]− ε

s
f(OPT)

)
≥ ε(1− ε)(F (x′ ∨ 1N∩OPT)− F (x′))− ε2f(OPT), (13)

where the first inequality follows from (12) and the last two from submodularity.
We relate the value F (x′ ∨ 1N∩OPT) to f(OPT) using Lemma C.6. At each step, we increase

each coordinate e of x by at most ε(1− xe(t)). Thus, for any step 0 ≤ j ≤ 1/ε, we have

xe(j + 1)− xe(j) ≤ (1− xe(j))ε,

or, equivalently,
xe(j + 1)− (1− ε)xe(j) ≤ ε.

Thus, for each time step t ≤ 1/ε, we have

xe(t) ≤
t∑

j=1

ε(1− ε)t−1−j = 1− (1− ε)t

24

By combining the inequality above with Lemma C.6, we obtain

F (x(t) ∨ 1N∩OPT) ≥ (1− ε)tf(N ∩OPT).

Plugging this bound into (13) then completes the proof. �

Lemma C.8. Suppose that the randomness b is good. The final solution x(1/ε) constructed by
DCGreedy(N,b) satisfies F (x(1/ε)) ≥ (1/e − ε)f(N ∩ OPT) − εf(OPT). Therefore the integral
solution S satisfies f(S) ≥ (1/e− ε)f(N ∩OPT)− εf(OPT).

Proof: By rearranging the inequality from Lemma C.7, we obtain

F (x(t)) ≥ ε(1− ε)t+1f(N ∩OPT) + F (x(t− 1))− ε2f(OPT)

1 + ε

≥ ε(1− ε)t+2f(N ∩OPT) + (1− ε)F (x(t− 1))− ε2f(OPT).

It follows by induction that

F (x(t)) ≥ tε(1− ε)t+2f(N ∩OPT)− tε2f(OPT).

Thus

F (x(1/ε)) ≥ (1− ε)
1
ε
+2f(N ∩OPT)− εf(OPT) ≥

(
1

e
− ε
)
f(N ∩OPT)− εf(OPT).

�
Combining Lemmas C.3 and C.8 then complete the proof of Lemma C.2.

D Improved Analysis of the Two-Round Algorithm for Non-monotone Maxi-
mization with a Cardinality Constraint

In this section, we show that for a cardinality constraint, we can improve the analysis slightly of
the algorithm given in Subsection 7.1.

Theorem D.1. If I is a cardinality constraint, the two-round algorithm from Subsection 7.1
achieves a

(
1− 1

m

) 1− 1
e

1+ 1
β (1− 1

e)
approximation in expectation for non-monotone maximization, where

β is the approximation guarantee of Alg.

Proof: The analysis is similar to the one in the proof of Theorem 7.1, and we describe the main
changes in this section. We define O as before, and modify the analysis of the solution S1 as follows.
Let Sj1 be the subset of S1 consisting of the first j elements picked by Greedy, with S0

1 = ∅. By the
standard analysis of the Greedy algorithm for a cardinality constraint, for each j ∈ [k], we have

f(Sj1)− f(Sj−1
1) ≥ f(Sj−1

1 ∪O)− f(Sj−1
1)

k
,

and therefore

f(S1) ≥
k−1∑
j=0

1

k

(
1− 1

k

)k−1−j
f(Sj1 ∪O).

Now, using E[1
Sj1∪O

] = E[1
Sj1

] + E[1O] = E[1
Sj1

] + 1OPT − p, and Lemma 3.2, we obtain:

E[f(Sj1 ∪O)] ≥ f−(E[1
Sj1

] + 1OPT − p).

25

Therefore

E[f(S1)] ≥
k−1∑
j=0

1

k

(
1− 1

k

)k−1−j
f−(E[1

Sj1
] + 1OPT − p). (14)

We analyze the expected value of the solution T as before, obtaining (4) from page 13. By combining
(14) and (4), we get

E[f(S1)] +
1

β

(
1−

(
1− 1

k

)k)
E[f(T)] ≥

k−1∑
j=0

1

k

(
1− 1

k

)k−1−j (
f−(E[1

Sj1
] + 1OPT − p) + f−(p)

)

≥
k−1∑
j=0

1

k

(
1− 1

k

)k−1−j
2 · f−

(
E[1

Sj1
] + 1OPT

2

)
,

where the last inequality follows from the convexity of f−. Since Sj1 ⊆ V1 and V1 is a 1/m sample
of V , we have E[1

Sj1
] ≤ 1

m · 1V . Therefore, using the definition of f− and the non-negativity of f ,
we obtain

2 · f−
(
E[1

Sj1
] + 1OPT

2

)
≥
(

1− 1

m

)
f(OPT).

and thus

E[f(S1)] +
1

β

(
1−

(
1− 1

k

)k)
E[f(T)] ≥

(
1−

(
1− 1

k

)k)(
1− 1

m

)
f(OPT).

It follows that

max {E[f(S1)],E[f(T)]} ≥
(

1− 1

m

) (
1−

(
1− 1

k

)k)
1 + 1

β

(
1−

(
1− 1

k

)k)f(OPT)

≥
(

1− 1

m

)
1− 1

e

1 + 1
β

(
1− 1

e

)f(OPT).

�

26

	Introduction
	Our Contributions
	Techniques
	Related Work

	The model
	Preliminaries
	Generic Parallel Algorithm for Submodular Maximization
	A Parallel Greedy Algorithm
	A Parallel Continuous Greedy Algorithm
	Faster Algorithms
	Two-Round Algorithms For Non-Monotone Maximization
	A Fast Sequential Algorithm for Matroid Constraints
	Monotone Maximization with a Cardinality Constraint

	Proof of Theorem 4.3
	A Framework for Parallelizing Randomized Algorithms
	Analysis of DCGreedy for the Application of the Randomized Framework
	Improved Analysis of the Two-Round Algorithm for Non-monotone Maximization with a Cardinality Constraint

