
CS7880: Special Topics in Theoretical Computer Science Spring 2019

Lecture 1 — January 17, 2019

Prof. Huy Nguyen Scribe: David Stalfa

In the previous class, we discussed the following problem: given a vector x ∈ Rn with the following
operations:

• init: xi ← 0

• update: xi ← xi + δ

output an estimate of ‖x‖2.

1 Generalized Problem

In this class, we generalize the the problem to output ‖x‖p = (
∑

i |xi|p)1/p.

Note that, when we cannot store the entire vector x, even computing ‖x‖1 is non-trivial. There are
three cases to consider:

1. 0 < p < 2

2. p = 2

3. p > 2

Case (2) was solved in the previous lecture. In this lecture, we focus on case (1).

Generalizing previous techniques. Recall that in the previous lecture, we used the following
property of the `2 norm.

Observation 1. if X1, X2 are independent random variables, and X1, X2 ∼ N(0, 1) and a1X1 +
a2X2 =

√
a21 + a22X, then X ∼ N(0, 1).

That is, given two normal, independent random variables X1, X2, their sum is equal to a normal
random variable scaled by the `2 norm of their coefficients. We would like to find distributions with
a similar property for 0 < p < 2, and use similar methods to compute ‖x‖p as were used previously
to compute ‖x‖2.

2 p-stable Distributions

Definition 2. A distribution D is p-stable if, given independent random variables X1, X2 ∼ D
and a1, a2 ∈ R, (ap1 + ap2)

1/pX = a1X1 + a2X2 implies X ∼ D.

1

N(0, 1) is, as we saw, a 2-stable distribution.

Lemma 3. For any p ∈ (0, 2], there is some p-stable distribution Dp.

For p = 1, the Cauchy distribution with pdf f(x) = 1
π(x2+1)

is p-stable, and we can use this as a

stand-in when thinking about p-stable distributions in general. For arbitrary 0 < p < 2, the pdf
for Dp will look something like f(x) = 1

c(x(1+p)+1)
for some constant c.

Law of Large Numbers (LLN). One question that arises in this context is: does the law of
large numbers contradict Lemma 3?

LLN states that, if we draw many samples from a distribution D, the samples will be distributed
according to the normal distribution. This seems to contradict Lemma 3 in that the lemma states
that if we draw many samples from Dp, they samples are distributed according to Dp. We can
resolve this by noting that LLN assumes finite variance of the starting distribution D, but p-stable
distributions like Cauchy have infinite variance.

Sampling from a p-stable Distribution. To sample from Dp, first sample θ uniformly from
[−π

2 ,
π
2] and r uniformly from [0, 1]. The sample from Dp is

sin(pθ)

(cos θ)1/p

(
cos((1− p)θ)

log(1/r)

) 1−p
p

Generally, however, we use polynomial approximations.

3 Algorithm to compute ‖x‖p

First attempt: The algorithm stores the linear sketch 〈r, x〉, where r1, . . . , rn are drawn from a
p-stable distribution.

Observation: by Lemma 3 the dot product 〈r, x〉 will follow the p-stable distribution with scaling
‖x‖p.

When estimating the `2 norm, we compared the square of the result with the variance, and this
yielded the estimate. However, in this case, the variance is infinite, so the same technique will not
work. Instead, we use the median of the distribution.

Definition 4. For any distribution D with pdf f , µ is the median of D if∫ µ

−∞
f(x)dx =

1

2

Note that the median is well defined only for some distributions, e.g. it is necessary for the distri-
bution to be continuous to have a median. The median is well defined for all p-stable distributions,
for p ∈ (0, 2).

2

Final Algorithm:

• let k = Θ(1
ε2

log 1
d)

• M is a k × n matrix whose entries are iid ∼ Dp

• y ←Mx

• return median(|y1|,...,|yk|)
median(|Dp|)

Note that taking the absolute value is essential here, because all Dp’s are symmetric about the line
x = 0, so the median will always be 0 if we do not take the absolute value.

3.1 Accuracy of Algorithm

• Let µ be the median of |Dp| (or a close approximation).

• Let F be the pdf of |Dp|
e.g. for Cauchy distribution with pdf f , F (t) = 2(f(t))

• Let α = mint∈[µ(1−ε),µ(1+ε)] F (t)

We require that α > 0, i.e. the distribution in the neighborhood of the median bounded away
from 0. This tells us that the median is well-defined.

Claim 5. Pr[median(|y1|, . . . , |yk|) < (1− ε)µ] < d.

Proof. For simplicity, we assume that ‖x‖p = 1 (since this is just the scale).

For any given yi, we can bound the probability that it is far from the median µ.

Pr[|yi| < (1 + ε)µ] =
1

2
−
∫ µ

µ(1+ε)
F (t)dt

≤ 1

2
− εµα

where we know that α > 0.

We know that median(|y1|, . . . , |yk|) < (1+ε)µ only if at least half of the |yi|’s are less than (1+ε)µ.
So, by the Chernoff bound,

Pr[median(|y1|, . . . , |yk|) < (1 + ε)µ] ≤ exp(−Ω(ε2α2µ2k))

≤ d if k = Θ

(
1

ε2
log

1

d

)
Where the last line follows from the fact that, for any Dp, µ and α are constant.

Showing Pr[median(|y1|, . . . , |yk|) > (1− ε)µ] < d is analogous.

3

3.2 Space Complexity of Algorithm

Here we have the same problem as in the previous lecture: we would like to use n random numbers
without storing them. We could, as before, use bounded independence, but this analysis is non-
trivial. Instead, we will use a different technique: pseudo-random generators. While this technique
does not yield optimal space bounds (log2 n instead of log n) it is more use friendly and easily
applicable. Understanding pseudo-random generators will first require an understanding of read
once branching programs.

3.2.1 Read Once Branching Programs (ROBP)

A computer program with bounded memory: s bits. At every step, the program recieves s bits
of input, and makes a transition (where the input includes both problem input and any randomly
generated bits). After R steps, the final state of the memory is the output. The program operates
under the restriction that each input can be read exactly once; specifically, the random bits in
earlier input cannot be recovered later in the program (though new random bits can always be
generated).

3.2.2 Pseudo-Random Generators (PRG’s)

A PRG h satisfies the following conditions.

• Let Un be a uniformly random string in {0, 1}n

• ∃h : {0, 1}s logR → {0, 1}sR

{0, 1}s logR is our seed, and {0, 1}sR is the output of the PRG.

• Pr[f(Un) = 1]− Pr[f(h(Us logR)) = 1] ≤ 2−O(s)

where f is any ROBP.

I.e. we require that no ROBP can distinguish the output from an actual random string.

3.2.3 Nisan’s PRG (from Nisan ’90 [1])

If we want to generate n random numbers using a naive approach, we would need to store n log n
random bits. Nisan’s PRG will allow us to generate n random numbers while storing only log n
bits for s and log n bits for R. So the total space for the random generator is log2 n. (This can be
reduced to log n using bounded independence, but this is difficult.) This allows us to reduce the
total space for the algorithm to

(log2 n)
1

ε2
log

1

δ

The generator uses log n pairwise independent functions

h1, h2, . . . , hlogn : [2s]→ [2s]

and generates a random number using a tree structure as shown in Figure 1. The bottom level of
this tree will have s log n bits, and this is our random number.

4

x ∈ {0, 1}s

x

x

x h3(x)

h2(x)

h2(x) h3(h2(x))

h1(x)

h1(x)

h1(x) h3(h1(x))

h2((h1(x))

h2(h1(x)) h3(h2(h1(x)))

Figure 1

References

[1] Noam Nisan. Psuedorandom generators for space-bounded computation. In STOC, 1990.

5

