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1 Overview

Last time we were working in a setting where initially we had a vector x ∈ Rn that was initially 0s
and we received updates at particular indices of the form:

Update (i, δ) : xi ← xi + δ

and when the updates were finished we’d compute f(x).

In this lecture we look at examples of linear sketching. In this setting we can’t store x, so instead
we store a sketch of x, in particular a linear sketch. For example, we might store the product Ax
for some matrix A ∈ Rk×n. Then initially we would have Ax(0) = 0 since x(0) = 0 and updates
would be of the form

Update: A(x+ δ)← Ax+Aδ

This way we can maintain the sketch through the stream of updates.

Sketching is also useful beyond the streaming model. For example, if we have n distributed machines
each storing some data x1, ..., xn, we can maintain a sketch of the data with A(x1 + x2 + ...+ xn).

2 Frequency Moments

To think about estimating the frequency moments of x, we should first mention the p-norm of x,

‖x‖p := (x− 1p + xp2 + ...+ xpr)
1/p

Note that the p = 2 norm is just the euclidean norm. As you increase p, the norms tell you more
about how concentrated the data is around 1 specific coordinate. In the limit, the p = ∞ norm
tells you exactly the largest coordinate of x.

Now we go through a linear sketching algorithm by Alon-Matias-Szegedy ’99 to solve the 2nd
moment estimation, which is just the 2-norm squared, i.e. ‖x‖22.

We’re going to use linear sketching to solve this problem, and we consider δ ∈ {−1, 1}, so the
updates can be either positive or negative. For the basic algorithm, we have k = 1 and we need to
choose the matrix A. We can choose the elements r1, r2, ..., rn uniformly randomly from {−1, 1} and
all we need to store is Z =

∑
i rixi. Then we can compute our estimator for the second moment,

or the 2-norm squared (‖x‖22‖), as Z2.
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The distribution of Z may be complicated so we start by computing our favorite statistics, the
expectation and variance. The expectation of Z2 is

E[Z2] = E[(
∑
i

rixi)
2]

= E[
∑
i=1

∑
j=1

rirjxixj ]

Let’s examine i = 1, j = 2. The only things that are random are the ri, and they are independent,
so the expectation can be split and thus E[r1r2x1x2] = 0.

In general, if i 6= j, then E[rirjxixj ] = 0 and E[r2i x
2
i ] = x2i because ri is either -1 or 1 so the square

is always equal to 1. Thus E[Z2] = ‖x‖22.

This is good, we have an unbiased estimator of the 2-norm now. Next let’s understand the variance:

We need to compute E[Z4] to understand the variance.

E[Z4] =
∑
i,j,k,l

E[ri, rj , rk, rl, xi, xj , xk, xl]

It would be nice to get rid of some of these terms, so let’s use the trick that if some index occurs
an odd number of times, then the expectation is 0. Then

E[Z4] = 3
∑
i

x2i
∑
j 6=i

x2j +
∑
i

x4i

The 3 comes from the fact that the second index matching i could be any of the other 3 indices
j, k, l. And now we can compute the variance,

var[Z2] = E[Z4]− E[Z2]2

= 3
∑
i

x2i
∑
j 6=i

x2j +
∑
i

x4i −

(∑
i

x2i

)2

≤ 3

(∑
i

x2i

)2

−

(∑
i

x2i

)2

= 2
(
E[Z2]

)2
As usual, we have that the expectation is equal to what we want but a variance that’s too large. We
can now use our usual trick of repeating the basic algorithm many times and taking and average to
reduce the variance when compared to one iteration of the algorithm. Ideally we want a variance
of O

(
ε2 E[Z2]2

)
so we should repeat O

(
1
ε2

)
times.

Let’s maintain Z1, Z2, ..., Zk where k = 10/ε. Then our estimator is

Ẑ2 =
Z2
1 + Z2

2 + ...+ Z2
k

k
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which has E[Ẑ2] = E[Z2] and var[Ẑ2] = var(Z2)
k ≤ ε2(E[Z2])

2

5 . Using Chebyshev,

P
[
|Ẑ2 − E[Ẑ2]

]
≤
ε2
(
E[Ẑ2]

)2
/5

ε2(E[Ẑ2])2
=

1
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And just like in the previous lectures we can take log(1/δ) copies and use the median of means.

Now if we want to reduce the storage of random bits in the matrix A what can we do? Do we need
independently random bit? Can we use k−wise independence? The answer is that we only need
4-wise independence because of the terms in E[Z4]. The total space is then 1

ε2
log 1

δ log n.

3 Distributional Johnson-Lindenstrauss Lemma

In JL sketching, we use a normal distribution for updates instead of ±1. A normal distribution
with mean µ and variance σ2 is denoted by N (µ, σ2), the density function for N (µ, σ) is

1√
2πσ2

exp(−(x− µ)2/2σ2)

One important feature for Normal distribution is that it’s closed under linear transformations. For
example, if X and Y are independent random variable with normal distribution. Then aX + bY
has a normal distribution.

3.1 Description of the sketch

We have a sketching matrix R ∈ Rk×n with Rij ∼ N (0, 1). Note that this is similar to the ±1
sketch in that the mean and variance are still 0 and 1 respectively. We maintain the vector Rx and
output ‖Rx‖22/k as our estimator for ‖x‖22.

3.2 Analysis of the algorithm

Let’s dive into our favorite statistics again.

E[‖Rx‖22/k] =
1

k
E(xTRTRx)

=
1

k
xT E(RTR)x

=
1

k
E[
∑
u,v,w

xuRv,uRv,wxw]

If u 6= w then E[xuRv,uRv,wxw] = 0 so

E[‖Rx‖22/k] =
1

k
E[

n∑
u=1

x2u

k∑
v=1

R2
v,u] = E[

∑
u

x2u] = ‖x‖2
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Next we will show that this concentrates around its mean with a normal tail. Without loss of
generality, assume that ‖x‖ = 1, since we could always scale the matrix coefficients to compensate.
We want to prove the following for one side of the tail (the other side is similar):

Lemma 1 (Distributional Johnson-Lindenstrauss Lemma).

P(1− ε ≤ ‖Rx‖/
√
k ≤ 1 + ε) ≥ 1− 2δ

Proof. We rewrite this with Z = Rx, square both sides, and since the exponential function is
monotonic we can prove the following to prove the lemma:

P(‖Z‖2 ≥ (1 + ε)2k) ≤ exp(−ε2k +O(kε3))

Let Y = ‖Z‖2 and let α = k(1 + ε)2, we have for s > 0 by the Markov bound

P(Y > α) = P(exp(sY ) > exp(sα)) ≤ exp(−sα)E[exp(sY )]

We can split E[exp(sY )] by independence:

E[exp(sY )] =
∏
i

E[exp(sZ2
i )] (1)

By the closure property, Zi also follows a normal distribution. Since for every i

E[Zi] =
∑
j

E[rijxj ] = 0

var(Zi) = E[Z2
i ] =

∑
j

E[r2ijx
2
j ] = ‖x‖2 = 1

we obtain that Zi ∼ N (0, 1), so we can calculate E[exp(sZ2
i )] analytically

E[exp(sZ2
i )] =

1√
2π

∫
exp(st2) exp(−t2/2)dt =

1√
1− 2s

So we get
P(Y ≥ α) = exp(−sα)(1− 2s)−k/2.

The last step is to plug in an appropriate choice of s. We set s = (1− k/α)/2, giving

P[Y > α] ≤ e−sα(1− 2t)−k/2 = e(k−α)/2(k/α)−k/2

choosing α = k(1 + ε)2 and plugging it into the above equation we get

P(Y ≥ α) = exp(−εk − ε2k/2 + k ln(1 + ε)) = exp(−kε2 + kO(ε3))

Here we use the Taylor expansion log(1 + x) = x − x2/2 + O(x3). This tail bound proves the
correctness of the estimation and we obtain a better parameter for k. Let exp(−Cε2k) = δ we have
k = O( 1

ε2
log 1

δ ) to get 1± ε approximation with probability 1− δ.

Unlike before, we cannot get away with 4-wise independence. When we split the expectation in (1)
we need at least k−wise independence, but that still means we don’t need full independence. In
terms of time complexity, we need O(k) to update the sketch.
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