
Special Topics in Theoretical Computer Science Spring 2019

Lecture 2 — 1/10/2019

Prof. Huy L. Nguyen Scribe: Lydia Zakynthinou

In the first lecture we reviewed some basic tail bounds and we discussed Morris’ algorithm and its
extensions for the counting problem.

In this lecture we will define the streaming model more formally and present algorithms for the
problem of counting distinct elements in a stream; we will start from an idealized solution and
conclude with the non-idealized.

1 Streaming Model

The Streaming Model of Computation is described as follows:

• Input vector x ∈ Rd.

• x is initialized to ~0.

• Get a stream of updates xi ← xi + α, each update characterized by the tuple (i, α).

• At the end, compute f(x).

The primary resource we care about is space. The task would be trivial if we could store all of x.
To use as little memory as possible, a lot of times we settle for a (1± ε) approximation of f(x) and
allow for randomized algorithms that fail to satisfy this guarantee with probability at most δ.

Any computational problem can be modeled this way, although a more natural representation is
usually desired. Examples of settings where these problems arise are the following:

• Router: e.g. the input is x = (x1, . . . , xm), where xj represents the number of packets sent
my machine j. Often we need to calculate statistics such as the number of distinct machines
sending packets, the number of machines using a large fraction of the bandwidth, etc.

• Log analysis: e.g. the input is x = (x1, . . . , xm), where xj represents the number of times
that a Google query j appears in the log. We might need to compare the current distribution
of queries with yesterday’s distribution.

In many cases, such as these, α = 1. But α could also be negative, e.g. if we count the number of
connections a machine has then α ∈ {−1,+1}.

2 Distinct Elements Problem

We focus now on the problem of counting distinct elements in a stream. More specifically, we have
a stream of indices i1, i2, . . . , im and want to calculate the number of distinct values in the stream.

1

Let the indices be in the range {1, . . . , n} and let t denote the number of distinct values in the
stream.

A trivial algorithm would be to store all distinct elements in a table. This algorithm would return
the exact number but it would need min(n,m) log n memory.

2.1 Flajolet-Martin algorithm: Idealized Version

In 1985, P. Flajolet and G. N. Martin [1] gave the following algorithm for the problem, denoted
FM :

• Choose a random hash function h : {1, . . . , n} → [0, 1].

• Store the minimum hash value X = min
i∈stream

h(i).

• At the end, return t̂ = 1
X − 1.

This is an idealized version because it uses a hash function in real numbers and we would need
infinite memory to store real numbers in a computer. We will analyze this version first, assuming
real numbers can be stored, and explain how to deal with this assumption later.

To gain some intuition about why the expected returned value is the correct one, we examine the
cases of t = 1 and t = 2.

• For t = 1: There is only one value j, and since the hash function is uniform, in expectation
h(j) = 0.5 and X = 0.5 as well. Therefore, in expectation t̂ = 1

0.5 − 1 = 1.

• For t = 2: For two values j1, j2, it holds that h(j1) = 1/3 and h(j2) = 2/3 so X = 1/3 in
expectation. Therefore, the expected returned value is t̂ = 1

1/3 − 1 = 2.

As in the last lecture, we will try to understand the distribution of t̂ through the expectation and
the variance.

Lemma 2.1.1.

E[X] =
1

t+ 1

Proof. By the definition of expectation for continuous distributions,

E[X] =

∫ ∞
0

Pr[X ≥ λ]dλ

=

∫ 1

0
(1− λ)tdλ (t independent values, each ≥ λ)

= − (1−λ)t+1

t+1

∣∣∣1
0

=
1

t+ 1

2

Lemma 2.1.2.

E[X2] =
2

(t+ 1)(t+ 2)

Proof.

E[X2] =

∫ ∞
0

Pr[X2 ≥ λ]dλ

=

∫ 1

0
Pr[X ≥

√
λ]dλ

=

∫ 1

0
(1−

√
λ)tdλ

=

∫ 1

0
2(1− u)tudu (u =

√
λ, du = dλ/2

√
λ)

= 2

(∫ 1

0
(1− u)tdu−

∫ 1

0
(1− u)t+1du

)
(u = 1− (1− u))

= 2

(
1

t+ 1
− 1

t+ 2

)
=

2

(t+ 1)(t+ 2)

It follows that Var(X) = E[X2] − (E[X])2 = 2
(t+1)(t+2) −

1
(t+1)2

= t
(t+1)2(t+2)

< (E[X])2. This

variance is too high to obtain even a 2-approximation estimate with high probability.

We use the same trick to reduce the variance, as in the last lecture: we keep track of q independent
variables X1, . . . , Xq and return

t̂ =
1

1
q

∑q
i=1Xi

− 1.

We call this algorithm FM+. It holds that Var(1q
∑q

i=1Xi) = 1
qVar(X1). Thus, by Chebychev’s

inequality, if q = 10
ε2

, we get

Pr

[∣∣∣∣∣1q
q∑
i=1

Xi −
1

t+ 1

∣∣∣∣∣ > ε

t+ 1

]
≤

Var(1q
∑q

i=1Xi)

ε2

(t+1)2

≤ 1

qε2
=

1

10
.

Therefore, with probability at least 90%, 1
q

∑q
i=1Xi ∈

[
1−ε
t+1 ,

1+ε
t+1

]
.

We still need to reduce the failure probability of the algorithm. To achieve failure probability δ, we
use p = O(log(1/δ)) copies of FM+ and output the median of the outputs. We call this algorithm
FM++. As in the last lecture, by Chernoff bound, the probability that at least half of the copies fail
is at most exp(Ω(p)) = δ. Therefore, FM++ returns a (1± ε)-approximation of t with probability
at least 1− δ.

The total space this algorithm uses is O(p · q) = O
(
log(1/δ)
ε2

)
for the values it maintains (and the

space to store a random hash function, which is linear in n and can’t be avoided).

3

2.2 Flajolet-Martin algorithm: Non-Idealized Version

To replace the ideal random hash function, we use k−wise independent hash functions.

Definition 1. A family H of hash functions h : [a] → [b] is k-wise independent iff for all distinct
i1, . . . , ik ∈ [a] and for all j1, . . . , jk ∈ [b]

Pr
h∈H

[h(i1) = j1 ∧ h(i2) = j2 ∧ . . . ∧ h(ik) = jk] =
1

bk
.

Intuitively, it simulates a random hash function if we take only k values. One such family is the
set of all degree-(k − 1) polynomials in Fq=a=b. We can store a hash function from this family in
O(log(qk)) = O(k log(q)) space.

For our problem, we will only need a 2-wise independent hash function h : [n] → [n] which can
be stored in O(log(n)) space. We assume for simplicity that n is a power of 2. We consider the
following algorithm.

• Store the value X = max
i∈stream

lsb(h(i)).

• At the end, return t̂ = 2X .

The function lsb(a) returns the position of the least significant 1 in the binary representation of a,
e.g. lsb(1001102) = 1, lsb(1010002) = 3.

Let Zj be the number of distinct values i with lsb(h(i)) = j. It is easy to see that half of the values
of the stream have lsb(h(i)) = 0. Therefore, E[Z0] = t

2 . Similarly, it holds that E[Z1] = t
4 and

E[Zj] =
t

2j+1
. (1)

Let Z>j = Zj+1 + Zj+2 + . . . be the number of distinct values i with lsb(h(i)) > j. We want to
have X ≈ log2 t. If we prove that with high probability

1. Z>log2 t+5 = 0 and

2. Zlog2 t−5 ≥ 1

then it holds that with high probability log2 t−5 ≤ X ≤ log2 t+5 and we have a 32-approximation
of t.

Proof. We will first prove that Z>log2 t+5 = 0 holds w.h.p. and then that Zlog2 t−5 ≥ 1 holds w.h.p.

1. By linearity of expectation,

E[Z>log2 t+5] =
t

2log2 t+7
+

t

2log2 t+8
+ . . . (Equation (1))

=
1

27
+

1

28
+ . . .

<
1

64
.

4

By Markov’s inequality,

Pr[Z>log2 t+5 ≥ 1] ≤ 1/64

1
=

1

64
.

Therefore with probability at least 1− 1
64 , Z>log2 t+5 = 0.

2. Recall that from equation (1),

E[Zlog2 t−5] =
t

2log2 t−5
= 16.

We need to calculate the variance of Zlog2 t−5. Let us fix j. We define Yi =

{
1, if lsb(h(i)) = j

0, otherwise
.

It holds that Zj =
∑

i∈stream
Yi and Pr[Yi = 1] = 1

2j+1 .

Since the Yi’s are pairwise independent (guaranteed by the choice of the 2-wise independent
hash function), by linearity of the variance, we have

Var(Zj) =
∑

i∈stream
Var(Yi)

= t · 1

2j+1
·
(

1− 1

2j+1

)
(Yi’s are Bernoulli(1

2j+1))

<
t

2j+1

Therefore, Var(Zlog2 t−5) ≤ 16.

By Chebyshev’s inequality,

Pr[Zlog2 t−5 = 0] ≤
Var(Zlog2 t−5)

(E[Zlog2 t−5])
2
≤ 16

162
=

1

16
.

So with probability 1− 1
16 , Zlog2 t−5 ≥ 1.

Therefore, with probability 1− 1
16 −

1
32 , Z>log2 t+5 = 0 and Zlog2 t−5 ≥ 1 hold simultaneously.

We conclude that with probability at least 90%, t̂ ∈ [t/32, 32t]. Since we have a constant approxi-
mation with constant probability, we can use the same techniques to improve the accuracy and the
failure probability of our solution.

References

[1] Philippe Flajolet, G. Nigel Martin. Probabilistic Counting Algorithms for Data Base Appli-
cations. J. Comput. Syst. Sci., 31(2):182–209, 1985.

5

