
Special Topics in Theoretical Computer Science March 11, 2019

Lecture 15: Matrix Product using JL, Subspace Embedding
Lecturer: Huy Lê Nguyễn Scribe: Xuangui Huang

Last time we saw how to approximately compute matrix product using sampling.
We also started discussion on using JLMP to approximately compute matrix prod-
uct. In this lecture we will see its complete proof, and we will see how to construct
distributions of sparse embedding matrices satisfying JLMP. Besides, we will consider
a variant of sparse embedding matrices for subspaces, and use it to solve least square
regression.

1 Approximate Matrix Product using JLMP

Definition 1. Let D be a distribution over matrices Π ∈ Rm×n. We say that D
satisfies (ε, δ, p) Johnson-Lindenstrauss Moment Property ((ε, δ, p)-JLMP) if for any
unit vector x we have

EΠ∼D

[∣∣‖Πx‖2
2 − 1

∣∣p] ≤ εpδ.

Last time we proved that applying Π with JLMP to vectors will keep their inner
products approximately.

Lemma 1. Suppose Π comes from D with (ε, δ, p)-JLMP for p ≥ 1, then for any unit
vectors x and y we have EΠ∼D[|〈Πx,Πy〉 − 〈x, y〉|p] ≤ (2ε)p δ.

Now we are going to prove that matrix product is approximately preserved with
high probability after applying Π with JLMP. Therefore instead of calculating A>B
we can calculate (ΠA)>ΠB, which will speed up our calculation since the dimensions
of ΠA and ΠB can be much smaller than those of A and B.

Theorem 1. Suppose Π comes from D with (ε, δ, p)-JLMP for p ≥ 2, then for any
matrices A ∈ Rn×a and B ∈ Rn×b, we have

Pr
Π∼D

[∥∥∥A>B − (ΠA)>ΠB
∥∥∥
F
≥ 2ε ‖A‖F ‖B‖F

]
≤ δ.

Proof. Let ai be the i-th column of A for i ∈ {1, . . . , a}, and bj be the j-th column

of B for j ∈ {1, . . . , b}. Let M = A>B − (ΠA)>ΠB, then the entry Mi,j on the i-th
row, j-th column is

Mi,j = 〈ai, bj〉 − 〈Πai,Πbj〉

= ‖ai‖ ‖bj‖
(〈

ai
‖ai‖

,
bj
‖bj‖

〉
−
〈

Π
ai
‖ai‖

,Π
bj
‖bj‖

〉)
= ‖ai‖ ‖bj‖Xi,j,

Lecture 15, Page 1

where we define Xi,j =
〈

ai
‖ai‖ ,

bj
‖bj‖

〉
−
〈

Π ai
‖ai‖ ,Π

bj
‖bj‖

〉
. Note that ai

‖ai‖ and
bj
‖bj‖ are unit

vectors so we can apply the above lemma to them.
By Markov inequality, we have

Pr
Π

[∥∥∥A>B − (ΠA)>ΠB
∥∥∥
F
≥ 2ε ‖A‖F ‖B‖F

]
≤ Pr

Π
[‖M‖pF ≥ (2ε ‖A‖F ‖B‖F)p]

≤ EΠ[‖M‖pF]

(2ε)p ‖A‖pF ‖B‖
p
F

. (1)

To bound EΠ[‖M‖pF], notice that it is EΠ

[(∑
i,jM

2
i,j

) p
2

]
, then we raise it to the

power of 2
p
:EΠ

(∑
i,j

M2
i,j

) p
2

 2
p

≤
∑
i,j

(
EΠ

[(
M2

i,j

) p
2

]) 2
p

(triangle inequality of p
2
-norm)

=
∑
i,j

(‖ai‖p ‖bj‖p |Xi,j|p)
2
p

=
∑
i,j

‖ai‖2 ‖bj‖2 (EΠ[|Xi,j|p])
2
p

≤
∑
i,j

‖ai‖2 ‖bj‖2 ((2ε)pδ)
2
p (by Lemma 1)

= (2ε)2δ
2
p ‖A‖2

F ‖B‖
2
F .

Note here we need p ≥ 2 so we have p
2
-norm and can use the triangle inequality in

the first step.

Therefore we have EΠ[‖M‖pF] = EΠ

[(∑
i,jM

2
i,j

) p
2

]
≤ (2ε)pδ ‖A‖pF ‖B‖

p
F , applying

it to Equation (1) we get the result.

2 Sparse Embedding Matrix for JLMP

Last time we mentioned that random matrices with i.i.d. Gaussian entries satisfies
(ε, δ, log 1

δ
)-JLMP with m = Θ

(
1
ε2

log 1
δ

)
. As such matrices are dense, the total run-

ning time for calculating (ΠA)>ΠB might be as large asO
(
ab 1

ε2
log 1

δ
+ (a+ b)n 1

ε2
log 1

δ

)
for A ∈ Rn×a and B ∈ Rn×b. The first term is basically unavoidable for multiplying a
dense a×m matrix with a dense m× b matrix. Since n� m, we expect ΠA and ΠB
to be dense. But for the second term, we can improve the running time of calculating
ΠA and ΠB by constructing sparse Π.

Consider a distribution of sparse embedding matrices Π ∈ Rm×n in which each
column has a single non-zero entry, generated by a pair-wise independent hash func-
tion h : [n]→ [m] and a random function σ : [n]→ {±1}, where for each i ∈ [n], h(i)

Lecture 15, Page 2

is the row of the non-zero element of the i-th column and σ(i) is the value of that
element.

We will show that for m = Θ
(

1
ε2δ

)
, this distribution satisfies (ε, δ, 2)-JLMP. Note

that Π is basically a linear sketch matrix, so the calculation of ΠA only takes time
O(nnz(A)), linear in the number of non-zeroes in A.

Claim 1. For the distribution D of matrices Π we describe above with m = Θ
(

1
ε2δ

)
,

for any unit vector x we have

EΠ∼D

[∣∣‖Πx‖2 − 1
∣∣2] ≤ ε2δ.

Proof. Note that EΠ

[∣∣‖Πx‖2 − 1
∣∣2] = EΠ

[
‖Πx‖4]− 2EΠ

[
‖Πx‖2]+ 1. We can bound

the first and second terms similarly as what we’ve done before.

EΠ

[
‖Πx‖2] =

m∑
i=1

EΠ

 ∑
j:h(j)=i

xjσ(j)

2
=

m∑
i=1

∑
j1,j2:h(j1)=h(j2)=i

EΠ[xj1xj2σ(j1)σ(j2)]

=
m∑
i=1

n∑
j=1

1

m
x2
j

= ‖x‖2

= 1,

where the first step comes from linearity of expectation, and the third step comes
from the fact that when j1 6= j2 we have σ(j1) independent of σ(j2) so the expectation
would be 0, thus the remaining term is

∑
j:h(j)=i E

[
x2
jσ(j)2

]
=
∑n

j=1
1
m
x2
j .

EΠ

[
‖Πx‖4] =

m∑
i=1

EΠ

 ∑
j:h(j)=i

xjσ(j)

4
=

m∑
i=1

∑
j1,j2,j3,j4:

h(jk)=i,∀k∈[4]

E[xj1xj2xj3xj4σ(j1)σ(j2)σ(j3)σ(j4)]

=
m∑
i=1

 ∑
j:h(j)=i

E
[
x4
j

]
+ 3

∑
j1 6=j2:

h(j1)=h(j2)=i

E
[
x2
j1
x2
j2

]
=

m∑
i=1

(
n∑
j=1

1

m
x4
j +

∑
j1 6=j2

3

m2
x2
j1
x2
j2

)

Lecture 15, Page 3

≤
m∑
i=1

n∑
j=1

x2
j

n∑
k=1

x2
k

(
1

m
+

2

m2

)
= 1 +

2

m
,

where the third step comes from the observation that whenever an element occurs an
odd number of times, the expectation is 0.

Therefore we have EΠ

[∣∣‖Πx‖2 − 1
∣∣2] ≤ 1 + 2

m
− 2 + 1 = 2

m
= ε2δ if we set

m = Θ
(

1
ε2δ

)
.

3 Subspace Embedding

Now we look at a slightly different problem, where we only require Π to preserve the
length of vectors in a specific linear subspace.

Definition 2. For a linear subspace E ⊆ Rn, we say Π is ε-subspace embedding for
E if for any unit vector x ∈ E, we have

∣∣‖Πx‖2 − 1
∣∣ ≤ ε.

Suppose dim(E) = d. Let U be an orthonormal basis of E, i.e. U>U = I,
U ∈ Rn×d, and E = {x|x = Uz, z ∈ Rd}. Then for any unit vector x ∈ E we have
‖Πx‖2 = ‖(ΠU) z‖2 for some vector unit vector z ∈ Rd. We have the following fact.

Fact 2. Suppose σ1 ≥ σ2 ≥ . . . are singular values of the matrix M , then ‖M‖2 =

σ1 = maxz:‖z‖=1 z
>Mz, and ‖M‖F =

√∑
i σ

2
i .

Therefore we have

max
x∈E:‖x‖=1

∣∣‖Πx‖2 − 1
∣∣ = max

z:‖z‖=1

∣∣‖(ΠU) z‖2 − 1
∣∣

= max
z:‖z‖=1

∣∣∣(Πuz)>ΠUz − 1
∣∣∣

= max
z:‖z‖=1

z>
(

(ΠU)>ΠU − I
)
z

=
∥∥∥(ΠU)>ΠU − I

∥∥∥
2
,

thus the condition in the above definition is equivalent to
∥∥∥(ΠU)>ΠU − I

∥∥∥
2
≤ ε. To

find such matrix Π, it is sufficient to find Π such that
∥∥∥(ΠU)>ΠU − I

∥∥∥
F
≤ ε.

From the previous sections we know that there is a distribution D of matrices
Π ∈ Rm×n with (ε′, δ, 2)-JLMP for m and ε′ to be determined, such that

Pr
[∥∥∥(ΠU)>ΠU − U>U

∥∥∥
F
≥ 2ε′ ‖U‖2

F

]
≤ δ,

Lecture 15, Page 4

which is equivalent to Pr
[∥∥∥(ΠU)>ΠU − I

∥∥∥
F
≥ 2ε′d

]
≤ δ. By setting ε′ = ε/2d

and m = Θ(d2/ε2δ), we get what we want: a distributional version of ε-subspace
embedding. Note that the choice D only depends on d (in addition to ε and δ), i.e.
it works for all linear subspaces E of the same dimension d.

Our Π comes from the previous section, so multiply it with matrix A only takes
time O(nnz(A)). An i.i.d. Gaussian Π will make the number of rows m only linear
in d, but as it is dense it would be slower to multiply it with other matrices.

4 Ordinary Least Square Regression

In the least square regression problem, we are given an X ∈ Rn×d representing n
examples with d features, and a vector y ∈ Rn. Usually we will have n � d. The
goal is find the best parameter βLS = argminβ∈Rd ‖Xβ − y‖2

2.
There is an analytical solution for this problem: suppose X>X is invertible, then

βLS =
(
X>X

)−1
X>y. This method takes O(nd2) time, and O(ndω−1) if we use fast

matrix multiplication, which is too slow in practice.
Let E be the span of columns of X and y. Then we have dim(E) ≤ d + 1. We

can use our previous result for subspace embedding to speed up the calculation.

Claim 2. If Π is an ε-subspace embedding for E, then with β̃ = argminβ ‖(ΠX) β − Πy‖2
2,

we have ∥∥∥Xβ̃ − y∥∥∥2

2
≤ 1 + ε

1− ε
∥∥XβLS − y∥∥2

2
.

Proof. By optimality of β̃ and ε-subspace embedding property, we have∥∥∥ΠXβ̃ − Πy
∥∥∥2

≤
∥∥ΠXβLS − Πy

∥∥2 ≤ (1 + ε)
∥∥XβLS − y∥∥2

.

On the other hand we also have
∥∥∥ΠXβ̃ − Πy

∥∥∥2

≥ (1− ε)
∥∥∥Xβ̃ − y∥∥∥2

.

Therefore our strategy is to calculate ΠX and Πy first then solve the least square
regression of reduced size using the analytical solution. This takes timeO(d·nnz(A)/ε+
poly(d, 1/ε)) if we use Gaussian Π, and only O(nnz(A) + poly(d, 1/ε)) if we use the
Π from the last section (but the poly(d, 1/ε) factor would be larger).

Lecture 15, Page 5

