Lecture Notes - February 28, 2019

1 Sampling approach to compute $A^{T} B$

Last time we wanted to compute $A^{T} B$ where $A \in \mathbb{R}^{n \times d}, B \in \mathbb{R}^{n \times p}$. The idea we used was instead of computing this product exactly, we would write

$$
A^{T} B=\sum_{i=1}^{n} a_{i} b_{i}^{T}
$$

where a_{i} is the i th row of A and b_{i} is the i th row of B. We then said that we could sample the i th term with probability p_{i}. If the i th term is in fact picked, we add the term $\frac{1}{p_{i}} a_{i} b_{i}^{T}$ to a sum. That's how we got the estimate

$$
C=\sum_{i=1}^{n} \frac{x_{i}}{p_{i}} a_{i} b_{i}^{T}
$$

where x_{i} is an indicator of whether i is picked or not.
Last time we also showed that

$$
\mathbb{E}[C]=A^{T} B \text { and } \mathbb{E}\left[\left\|C-A^{T} B\right\|_{F}^{2}\right]=\sum_{i}\left(\frac{1}{p_{i}}-1\right)\left\|a_{i}\right\|^{2}\left\|b_{i}\right\|
$$

and that the optimal choice of p is $p \sim\|a\|\|b\|$, i.e. p should be proportional to the product of the norms of a and b. This implies that

$$
\mathbb{E}\left[\left\|C-A^{T} B\right\|_{F}^{2}\right] \leq\left(\sum_{i}\left\|a_{i}\right\|\left\|b_{i}\right\|\right)^{2}
$$

To improve our estimate from just using C, we can pick m samples and compute

$$
\hat{C}=\frac{1}{m}\left(C_{1}+C_{2}+\ldots+C_{m}\right)
$$

and note that $\left(\sum_{i}\left\|a_{i}\right\|\left\|b_{i}\right\|\right)^{2} \leq\left(\sum_{i}\left\|a_{i}\right\|^{2}\right)\left(\sum_{i}\left\|b_{i}\right\|^{2}\right)=\|A\|_{F}^{2}\|B\|_{F}^{2}$.
If we want

$$
\begin{equation*}
\left.\left\|\hat{C}-A^{T} B\right\|_{F}^{2}\right] \leq \epsilon\|A\|_{F}^{2}\|B\|_{F}^{2} \text { with probability } \frac{9}{10} \tag{1}
\end{equation*}
$$

then we need $m=\Theta\left(\frac{1}{\epsilon^{2}}\right)$ samples.
Ideally we want a probability of $1-\delta$ instead of just $\frac{9}{10}$. In that case we could try our usual method of repeating the experiment $O(\log (1 / \delta))$ times to get $\hat{C}_{1}, \ldots, \hat{C}_{t}$. Then if the \hat{C}_{i} were numbers, we
could take the median. But what should the analogous operation be on matrices?

The idea is to find a point close to a lot of other points and we will have with high probability that it is no more than 4ϵ from the optimum. By the Chernoff inequality, at least $\frac{9}{10}$ of the \hat{C}_{i} s satisfy (1). Now suppose $\hat{C}_{i}{ }^{*}$ is within distance 2ϵ from $\frac{9}{10}$ of the others. This would imply that $\hat{C}_{i}{ }^{*}$ is within 2ϵ of some "good" point, which implies $\hat{C}_{i}{ }^{*}$ is within 4ϵ from $A^{T} B$.
The time for this procedure is $O(n d+n p)+O\left(\frac{1}{\epsilon^{2}} d p+\log ^{2} \frac{1}{\delta}\right.$. It is an open question whether we can speed up the second term in this expression. The term $\log ^{2} \frac{1}{\delta}$ seems high when typically we see a dependency on accuracy is $\log \frac{1}{\delta}$. The open question at a high level is this: can you find a $"$ median" in $O\left(\log \frac{1}{\delta}\right)$.

2 Sketching Approach

Definition 1 (JL moment property). Let D be a distribution over matrices $\Pi \in \mathbb{R}^{m \times n}$. D satisfies the $(\epsilon, \delta, p)-J L$ moment property if for any x of unit norm $\left(\|x\|_{2}=1\right)$,

$$
\underset{\Pi \sim D}{\mathbb{E}}\left[\left|\|\Pi x\|^{2}-1\right|^{p}\right] \leq \epsilon^{p} \delta
$$

Note that many things satisfy this property. For example, a matrix with iid Gaussian entries satisfies the $\left(\epsilon, \delta, \log \frac{1}{\delta}\right)-$ JL moment property with $n=\Theta\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.
How should we use this to estimate $A^{T} B$? The idea is to operate with matrices $\left(A^{T} \Pi^{T}\right)(\Pi B)$. But first, let's introduce a lemma:

Lemma 2. If D satisfies the $(\epsilon, \delta, p)-J L$ moment property then for any vectors x, y with unit lengths,

$$
\underset{\Pi \sim D}{\mathbb{E}}\left[|\langle\Pi x, \Pi y\rangle-\langle x, y\rangle|^{p}\right] \leq(3 \epsilon)^{p} \delta
$$

Proof. We first calculate $\langle x, y\rangle,\langle\Pi x, \Pi y\rangle$, and then bound $|\langle\Pi x, \Pi y\rangle-\langle x, y\rangle|$ using the triangle inequality:

$$
\begin{aligned}
\langle x, y\rangle & =\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \\
\langle\Pi x, \Pi y\rangle & =\frac{1}{4}\left(\|\Pi(x+y)\|^{2}-\|\Pi(x-y)\|^{2}\right) \\
|\langle\Pi x, \Pi y\rangle-\langle x, y\rangle| & \leq \frac{1}{4}\left(\|\Pi(x+y)\|^{2}-\|x+y\|^{2}-\|\Pi(x-y)\|^{2}+\|x-y\|^{2}\right)
\end{aligned}
$$

So
$\left(\underset{\Pi}{\mathbb{E}}|\langle\Pi x, \Pi y\rangle-\langle x, y\rangle|^{p}\right)^{\frac{1}{p}} \leq\left(\underset{\Pi}{\mathbb{E}}\left[\left|\left\|\Pi\left(\frac{x+y}{2}\right)\right\|^{2}-\left\|\frac{x+y^{2}}{2}\right\|^{p}\right|^{p}\right]\right)^{\frac{1}{p}}+\left(\underset{\Pi}{\mathbb{E}}\left[\left|\left\|\Pi\left(\frac{x-y}{2}\right)^{2}-\right\| \frac{x-y}{2} \|^{2}\right|^{p}\right]\right)^{\frac{1}{p}}$
which by the JL-moment property is bounded:

$$
\left(\underset{\Pi}{\mathbb{E}}|\langle\Pi x, \Pi y\rangle-\langle x, y\rangle|^{p}\right)^{\frac{1}{p}} \leq \epsilon \delta^{\frac{1}{p}}+\epsilon \delta^{\frac{1}{p}}=2 \epsilon \delta^{\frac{1}{p}}
$$

Theorem 3. Suppose D satisfies the (ϵ, δ, p)-JL moment property. For any $A \in \mathbb{R}^{n \times a}, B \in \mathbb{R}^{n \times b}$,

$$
\underset{\Pi}{\mathbb{P}}\left(\left|\left\|A^{T} B-(\Pi A)^{T}(\Pi B)\right\|_{F}\right|>3 \epsilon\|A\|_{F}\|B\|_{F}\right) \leq \delta
$$

and gives time ab $\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}$ and to compute ΠA is $n a \frac{1}{\epsilon^{2}} \log \frac{1}{\delta}$. Note the single \log factor here.
We ran out of time just after starting this proof. We will continue with this next class.

