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Lecture 13: Sketching for Linear Algebra Problems
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First, we will finish the proof of the guarantee of the Iterative Hard Thresholding algorithm from
Lecture 12.

1 Iterative Hard Thresholding: proof cont’d

Recall that the goal is to recover the k-sparse vector x from an observed measurement y = Πx+ e
where e is the post-measurement noise and Π satisfies (ε, 3k)-RIP with ε ≤ 1

4
√
2
.

In Lecture 12, we proved that the residual error r(t) = x− x(t) satisfies the following inequality:

‖r(t+1)‖2 ≤ 2
∥∥∥(IB(t+1) −Π>

B(t+1)ΠB(t+1)

)
r
(t)

B(t+1)

∥∥∥
2
+2
∥∥∥Π>

B(t+1)ΠB(t)\B(t+1)r
(t)

B(t)\B(t+1)

∥∥∥
2
+2
∥∥∥Π>

B(t+1)eB(t+1)

∥∥∥
2

(1)

We bound each one of the three terms.

Claim 1 (Claim 3, Lecture 12).
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Proof. Similarly to Lemma 2 from Lecture 11, since Π satisfies the (ε, 3k)-RIP, for any 2k-sparse
vectors u and v with disjoint support:∣∣∣uΠ>Πv

∣∣∣ ≤ ε‖u‖2‖v‖2
In particular, if we consider arbitrary u with support(u) ⊆ B(t+1) and v with support(v) ⊆ B(t) \
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Claim 3.
∥∥∥Π>

B(t+1)eB(t+1)

∥∥∥
2
≤ (1 + ε)‖e‖2.

Proof. It holds that
∥∥∥Π>

B(t+1)

∥∥∥ = ‖ΠB(t+1)‖.

By the definition of the operator norm and for an arbitrary 2k-sparse vector u with support(u) ⊆
B(t+1), ‖ΠB(t+1)‖ = sup

‖u‖2=1
‖Πu‖2 ≤ (1 + ε).
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It follows that
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By Claims ??, ??, ??, and inequality (??), it follows that:
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Thus,
‖r(t+1)‖2 ≤ 2−1‖r(t)‖2 + 3‖e‖2 (2)

By induction, we will show that

‖r(t+1)‖2 ≤ 2−t‖r(1)‖2 + 6‖e‖2. (3)

• Base Step: By (??), for t = 1, ‖r(2)‖2 ≤ 2−1‖r(1)‖2 + 3‖e‖2 ≤ 2−1‖r(1)‖2 + 6‖e‖2.

• Inductive Step: By (??), it holds that, ‖r(t+1)‖2 ≤ 2−1‖r(t)‖2 + 3‖e‖2. By inductive hypothe-
sis, ‖r(t)‖2 ≤ 2−t+1‖r(1)‖2+6‖e‖2. Therefore, ‖r(t+1)‖2 ≤ 2−1(2−t+1‖r(1)‖2+6‖e‖2)+3‖e‖2 =
2−t‖r(1)‖2 + 6‖e‖2.

Hence, since r(1) = x − x(1) = x, we get that ‖r(t+1)‖2 ≤ 2−t‖x‖2 + 6‖e‖2 and this concludes the
proof of Theorem 2 from Lecture 12.

2 Model Based Compressive Sensing

So far, the model we have assumed for our signal x is the set of all vectors in Rn that are k-sparse.
Would having more information about the structure of the signal help in its recovery? In the more
general Model Based Compressive Sensing we assume some model M. The number of rows of the
matrix Π grows as the logarithm of the size of an ε-net of M. If the model M is the set of all
k-sparse vectors, as before, then this quantity would be ∼ log

((
n
k

))
.

In the general case, the Model Based Iterative Hard Thresholding algorithm is:

Algorithm 1 Model Based Iterative Hard Thresholding

x(1) ← 0
for t = 1 to T do
a(t+1) ← x(t) + Π>

(
y −Πx(t)

)
x(t+1) ← PM(a(t+1))

end for

Here, instead of the operator Hk, we have PM, which projects a(t+1) to M.
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One example of such a model is the “block sparsity” model, where we assume there exist k non-
zeros in the signal and each is in one of k

B blocks of size B. Then, in order to recover the signal,
one would have to guess the start of each of those blocks, so the number of measurements needed
would be ∼ k

B log
(
n
k

)
. Another example is “tree sparsity”. In the Tree Sparsity problem we are

given a node-weighted tree of size n and aim to output a tree of size k with maximum weight ([?]).
In this case, the number of measurements needed is ∼ k + log(n).

3 Fast Algorithms for Linear Algebra Problems

3.1 Matrix Multiplication

Let A ∈ Rn×d and B ∈ Rd×p be two matrices. Let ai denote row i of A and bj denote row j of B.
The goal is to compute (approximately) the product A>B.

We can compute the product exactly in O(ndp) time. Furthermore, if the matrices are in Rn×n,
then this computation takes O(nω) time, where ω = log2(7) for Strassen’s algorithm. The state of
the art algorithm for this problem achieves ω = 2.3728639.

We aim to compute a matrix C such that with probability at least 1−δ, ‖C−A>B‖q ≤ ε‖A‖p‖B‖p,
for some norm p and q.

3.1.1 Sampling Technique

We will compute a matrix C as follows: we will sample the i-th term with probability pi (to be
defined later) and whenever the i-th term is picked, we add 1

pi
aib
>
i to the sum.

Then, we have the following claim.

Claim 4. E[C] = A>B.

Proof. E[C] =
n∑

i=1
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(
1
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i

)
=

n∑
i=1
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>
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Claim 5. E[‖A>B − C‖2F ] =
n∑

i=1
‖ai‖2 · ‖bi‖2 ·

(
1
pi
− 1
)
.

Proof. Let xi be the indicator variable such that xi = 1 if the i-th term is picked, and xi = 0
otherwise.
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To minimize the expression, we set pi = ‖ai‖‖bi‖∑n
i=1 ‖ai‖‖bi‖

.

In the next lecture, we will present and prove the guarantee of the approximation matrix C.
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