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Overview

In the last lecture we started looking at Compressed Sensing, in this lecture we show that
solving an `1 norm minimization problem is sufficient for sparse signal recovery. We prove
that we can recover any sparse signal using only a few linear measurements and that this
can be done in polynomial time. This method of sparse recovery is sometimes called the
Basis Pursuit method.

1 Compressed Sensing

The original signal we are interested in recovering is x ∈ Rn which is k-sparse (only has k
non-zeroes) and may have noise added to it. Our goal is to find an x̂ such that:

‖x̂− x‖2 ≤ O
(

1√
k

)
· ‖x− xk‖1

where xk consists of only the top k coordinates of x in absolute value. Note that the `1
norm term on the RHS of the inequality denotes the optimal error possible. This means
that if there is no noise then we wish to perfectly recover the k-sparse signal.

Definition 1 (Restricted Isometry Property (RIP)) Π ∈ Rm×n satisfies (ε, k)-RIP
if ∀x that are k-sparse,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22

We proved last time, using ε-nets and the JL lemma applied to
(
n
k

)
k-dimensional sub-

spaces of Rn, that there exists such an RIP matrix Π for m = O( k
ε2

log n
k ).

We now state Theorem 2, which is the main theorem of compressed sensing.

Theorem 2 There is a poly-time algorithm which, given Πx for some Π satisfying the
(
√

2− 1, 2k)-RIP, can recover x̂ such that

‖x̂− x‖2 ≤ O
(

1√
k

)
‖x− xk‖1

Ideally we would like to solve the following optimization problem:

min
Πz=Πx

‖z‖0
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However, since this is an NP-hard non-convex optimization problem, we use the tightest
convex relaxation of the problem:

min
Πz=Πx

‖z‖1

This convex relaxation can actually be written as a linear program by rewriting z as a
positive and a negative component, z = z+ − z−.

min (z+ + z−) (1)

s.t. Π(z+ − z−) = Πx

z+, z− ≥ 0

This allows us to use any of the polynomial time algorithms for linear programming to
solve this optimization problem and get an optimal z∗. We will prove, in Theorem 3, that
such a z∗ satisfies the required bound for sparse signal recovery. Since finding the optimal
solution z∗ can be done in polynomial time, Theorem 2 becomes a straighforward corollary
of Theorem 3.

Theorem 3 If Π is (ε, 2k)-RIP with ε ≤
√

2 − 1, then the optimal solution z = x + h for
the optimization problem 1 satisfies:

‖h‖2 ≤ O
(

1√
k

)
‖x− xk‖1

Proof. The core idea in the proof is to sort the coordinates of x and h by their absolute
values and put them into groups of size k. We use the following notation:

• xS is x with all coordinates outside S zeroed out.

• S is the complement of S.

Using that notation, we define a partition of the coordinates into sets of size at most k:

• T0 is the set of indices of the k-largest coordinates of x in absolute value.

• T1 is the set of indices of the k-largest coordinates of h in absolute value, after ex-
cluding the indices in T0.

• For i ≥ 2, Ti is the set of indices of the k-largest coordinates of h in absolute value,
after excluding the indices

⋃j<i
j=0 Tj .

The above partition of indices into sets of size k is sometimes called the shelling trick.
A property of such a partition that we will rely on is the following: for all j ∈ Ti and for
any k ∈ Ti−1, it holds that |xj | ≤ |xk|.

We bound ‖h‖
2

by using the triangle inequality to split it into two terms and then show

that both those terms are small:

‖h‖
2
≤ ‖h

T0∪T1
‖

2
+ ‖h

T0∪T1
‖

2

We will show that both the terms on the RHS are small by proving the following claims
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Claim 1

‖h
T0∪T1

‖
2
≤ O

(
1√
k

)
‖x

T0
‖

1

Claim 2

‖h
T0∪T1

‖
2
≤ ‖h

T0∪T1
‖

2
+O

(
1√
k

)
‖x

T0
‖

1

We first prove Claim 2 using the following Lemma

Lemma 1 ∑
j≥2

‖h
Tj
‖

2
≤ 2√

k
‖x

T0
‖

1
+ ‖h

T0∪T1
‖

2

Proof. We rely on the shelling trick property mentioned earlier for proving this lemma∑
j≥2

‖h
Tj
‖

2
≤
∑
j≥2

‖h
Tj
‖
∞

√
k

≤
∑
j≥1

‖h
Tj
‖

1

√
k

k

=
‖h

T0
‖

1√
k

(2)

Now we use the optimality of z = x + h: for any vector y, ‖y‖
1
≥ ‖z‖

1
and in particular

this is true for y = x.

‖x‖
1
≥ ‖z‖

1

≥ ‖(x+ h)
T0
‖

1
+ ‖(x+ h)

T0
‖

1

Using the triangle inequality

‖x
T0
‖

1
+ ‖x

T0
‖

1
≥ ‖x

T0
‖

1
− ‖h

T0
‖

1
+ ‖h

T0
‖

1
− ‖x

T0
‖

1

And then shuffling the terms

‖h
T0
‖

1
≤ 2‖x

T0
‖

1
+ ‖h

T0
‖

1

≤ 2‖x
T0
‖

1
+
√
k‖h

T0
‖

2

≤ 2‖x
T0
‖

1
+
√
k‖h

T0∪T1
‖

2
(3)

Plugging in the value in Equation 3 into Equation 2 proves the lemma. 2

Claim 2 can then be proved using the triangle inequality and Lemma 1.

‖h
T0∪T1

‖
2
≤
∑
j≥2

‖h
Tj
‖

2
≤ 2√

k
‖x

T0
‖

1
+ ‖h

T0∪T1
‖

2
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Lemma 2 If vectors u and v are supported on disjoint sets S, T of coordinates respectively,
and |S|, |T | ≤ k then |〈Πu,Πv〉| ≤ ε‖u‖

2
‖v‖

2
if Π is (ε, 2k)-RIP.

Proof. Without loss of generality we can assume that u and v are unit vectors. We use
the following identity

ab =
1

4

(
(a+ b)2 − (a− b)2

)
When applied on Πu and Πv and then using the RIP property we get:

〈Πu,Πv〉 =
1

4

(
‖Π(u+ v)‖2

2
− ‖Π(u− v)‖2

2

)
=

1

4

(
2(1 + ε)− 2(1− ε)

)
= ε

2

Using Lemma 2 we can prove Claim 1. Since z = x+h satisfies the constraint Πz = Πx,

Π(x+ h) = Πx =⇒ Πh = 0 =⇒ Π
(
h
T0∪T1

)
= −Π

(
h
T0∪T1

)
Since we want to bound ‖h

T0∪T1
‖

2
, we square it, write it as an inner product and simplify

using Lemma 2.

‖Πh
T0∪T1

‖2
2

= 〈Πh
T0∪T1

,Πh
T0∪T1

〉

= 〈Πh
T0∪T1

,−Πh
T0∪T1

〉

=
∑
j≥2

∣∣∣∣〈ΠhT0 ,ΠhTj 〉
∣∣∣∣+
∑
j≥2

∣∣∣∣〈ΠhT1 ,ΠhTj 〉
∣∣∣∣

≤
∑
j≥2

ε ·
(
‖h

T0
‖

2
+ ‖h

T1
‖

2

)
· ‖h

Tj
‖

2

Now we simplify using the fact that h
T0

and h
T1

are orthogonal. Then we use the RIP

property and Lemma 1.

‖Πh
T0∪T1

‖2
2
≤
∑
j≥2

ε
√

2‖h
T0∪T1

‖
2
· ‖h

Tj
‖

2

(1 + ε)‖h
T0∪T1

‖2
2
≤
∑
j≥2

ε
√

2‖h
T0∪T1

‖
2
· ‖h

Tj
‖

2

(1 + ε)‖h
T0∪T1

‖2
2
≤ ε
√

2‖h
T0∪T1

‖
2

(
‖h

T0∪T1
‖

2
+O

(
1√
k

)
‖x

T0
‖

1

)
‖h

T0∪T1
‖

2
≤ ε
√

2

1− ε

(
‖h

T0∪T1
‖

2
+O

(
1√
k

)
‖x

T0
‖

1

)
‖h

T0∪T1
‖

2
≤

ε
√

2
1−ε

1− ε
√

2
1−ε

·O
(

1√
k

)
‖x

T0
‖

1
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This proves Claim 1 and hence both the theorems as well. 2

2 Note about RIP matrices

Last time we saw that the distributional JL lemma allowed us to prove the existence of a
matrix with the RIP property. The reverse direction is also possible. That is, if there is a
matrix M with the RIP property then we can construct a distribution on matrices satisfying
the distrubutional JL lemma with O(ε) error and a failure probability of 2−Ω(k).

Note that we lose a little in this sequence of transformations. If we start with a distri-
butional JL lemma with failure probability 2−Ω(k log(n

k
)), get a RIP matrix and use that to

come up with a distributional JL, then we lose the log(nk ) factor and have a slightly worse
failure probability than we started with.

3 More on Compressed Sensing

• We saw how to use LP-solvers for sprase recovery. But these methods can be slow
since the LP has a lot of constraints. This can be improved by using other methods.

• Sometimes, the signal we are interested in may not be sparse in the basis in which we
measure but in a different basis. In some cases, we can also recover the sparse signal
in a different basis.

• We can also extend to cases where there is an error during or post measurement. This
will cause our recovery algorithm to incur an additive error proportional to the post
measurement error.

• More structure on the signal can help reduce the number of required measurements.
For example, in an image, if we look at difference between neighbouring pixels, then
that signal is sparse but it also has the additional property that all the non-zero entries
are connected and form object boundaries in the image. Such information can help
us improve the number of measurements needed for sparse recovery.
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